K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

a) x^2 - 4x = 0

<=> x^2 = 4x

=> x = 4

8 tháng 10 2016

hỏi ít thôi

b) = 6(x+5) +x(x+5) = 0

(x+5)(6+x) = 0

x = -5

x = -6

30 tháng 6 2021

a) 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)

Vậy x=0 hoặc x=\(\dfrac{19}{24}\)

30 tháng 6 2021

b) 5(2x-3)+4x(x-2)+2x(3-2x)=0

\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

\(\Leftrightarrow x=\dfrac{15}{8}\)

vậy x=\(\dfrac{15}{8}\)

13 tháng 7 2021

a) x(x - 5) - 4x + 20 = 0

\(\Leftrightarrow\) x(x - 5) - (4x + 20)

\(\Leftrightarrow\) x(x - 5) - 4(x - 5) = 0

\(\Leftrightarrow\) (x - 5)(x - 4)

Khi x - 5 = 0 hoặc x - 4 = 0

 \(\Leftrightarrow\) x = 5           \(\Leftrightarrow\) x = 4

 Vậy S = \(\left\{5;4\right\}\)

b) x(x + 6) - 7x - 42 = 0

 \(\Leftrightarrow\) x(x + 6) - (7x - 42) = 0

 \(\Leftrightarrow\) x(x + 6) - 7(x + 6) = 0

 \(\Leftrightarrow\) (x + 6)(x - 7) = 0

Khi x - 6 = 0 hoặc x - 7 = 0

   \(\Leftrightarrow\) x = 6           \(\Leftrightarrow\) x = 7

 Vậy S = \(\left\{6;7\right\}\)

c) x3 - 5x2 - x + 5 = 0

 \(\Leftrightarrow\) (x3 - 5x2) - (x + 5) = 0

 \(\Leftrightarrow\) x2 (x - 5) - (x - 5) = 0

 \(\Leftrightarrow\) (x - 5)(x2 - 1) = 0

 \(\Leftrightarrow\) (x - 5)(x - 1)(x + 1) = 0

 Khi x - 5 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0

   \(\Leftrightarrow\) x = 5           \(\Leftrightarrow\) x = 1            \(\Leftrightarrow\) x = -1

 Vậy S = \(\left\{5;1;-1\right\}\)

d) 4x2 - 25 - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x)2 - 52 - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x - 5)(2x + 5) - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x - 5) \([\left(2x+5\right)-\left(3x+7\right)]\) = 0

\(\Leftrightarrow\) (2x - 5) ( 2x + 5 - 3x + 7) = 0

\(\Leftrightarrow\) (2x - 5)( -x + 12) = 0

Khi 2x - 5 = 0 hoặc -x + 12 = 0

  \(\Leftrightarrow\) 2x = 5             \(\Leftrightarrow\)   -x = -12

  \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)              \(\Leftrightarrow\) x = 12

 Vậy S = \(\left\{\dfrac{5}{2};12\right\}\)

e) x3 + 27 + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) x3 - 33 + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) (x - 3)(x2 - 3x + 9) + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) (x - 3) \(\left[\left(x^2-3x+9\right)+\left(x-9\right)\right]\) = 0

\(\Leftrightarrow\) (x - 3) ( x2 - 3x + 9 + x - 9) = 0

\(\Leftrightarrow\) (x - 3)(x2 - 2x) = 0

\(\Leftrightarrow\) (x - 3)x(x - 2)

 Khi x - 3 = 0 hoặc x = 0 hoặc x - 2 = 0

    \(\Leftrightarrow\) x = 3                            \(\Leftrightarrow\) x = 2

 Vậy S = \(\left\{3;0;2\right\}\)

 Chúc bạn học tốt

a) Ta có: \(x\left(x-5\right)-4x+20=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

b) Ta có: \(x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

30 tháng 7 2021

a)   \(\left(2x-1\right)^2-25=0\)

⇔ \(\left(2x-1\right)^2-5^2=0\)

⇔  \(\left(2x-1-5\right)\left(2x-1+5\right)=0\)

⇒  \(2x-1-5=0\) hoặc \(2x-1+5=0\)

⇔      \(x=3\)           hoặc  \(x=-2\)

30 tháng 7 2021

Bài 1: Tìm x

a) (2x-1) ² - 25 = 0

<=> (2x-1)2 =  25

<=>  2x-1 = 5  hay 2x-1 =-5

<=>  2x= 6      hay  2x=-4

<=>   x=3     hay    x= -2

Vậy S={3; -2}
b) 3x (x-1) + x - 1 = 0

<=> (x-1)(3x+1)=0

<=> x-1=0  hay  3x+1=0

<=> x=1 hay 3x=-1

<=> x=1 hay x=\(\dfrac{-1}{3}\)

Vậy S={1;\(\dfrac{-1}{3}\)}

c) 2(x+3) - x ² - 3x = 0

<=> 2(x+3)- x(x+3)=0

<=> (x+3)(2-x)=0

<=> x+3=0 hay 2-x=0

<=> x=-3  hay  x=2

Vậy S={-3;2}
d) x(x - 2) + 3x - 6 = 0

<=> x(x-2)+3(x-2)=0

<=> (x-2)(x+3)=0

<=> x-2=0 hay x+3=0

<=> x=2 hay x=-3

Vậy S={2;-3}
e) 4x ² - 4x +1 = 0

<=> (2x-1)2=0

<=> 2x-1=0

<=> 2x=1

<=> x=\(\dfrac{1}{2}\)

Vậy S={\(\dfrac{1}{2}\)}
f) x +5x2  = 0

<=> x(1+5x)=0

<=>x=0 hay 1+5x=0

<=> x=0 hay 5x=-1

<=> x=0 hay x= \(\dfrac{-1}{5}\)

Vậy S={0;\(\dfrac{-1}{5}\)}
g) x ²+ 2x -3 = 0

<=> x2-x+3x-3=0

<=> x(x-1)+3(x-1)=0

<=>  (x-1)(x+3)=0

<=> x-1=0 hay x+3=0

<=> x=1  hay x=-3

Vậy S={1;-3}

 

23 tháng 10 2021

e: ta có: \(4x^2+4x-6=2\)

\(\Leftrightarrow4x^2+4x-8=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

f: Ta có: \(2x^2+7x+3=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

16 tháng 10 2023

a) \(6x^2-72x=0\)

\(6x\left(x-12\right)=0\)

\(6x=0\) hoặc \(x-72=0\)

*) \(6x=0\)

\(x=0\)

*) \(x-12=0\)

\(x=12\)

Vậy \(x=0;x=12\)

b) \(-2x^4+16x=0\)

\(-2x\left(x^3-8\right)=0\)

\(-2x=0\) hoặc \(x^3-8=0\)

*) \(-2x=0\)

\(x=0\)

*) \(x^3-8=0\)

\(x^3=8\)

\(x=2\)

Vậy \(x=0;x=2\)

c) \(x\left(x-5\right)-\left(x-3\right)^2=0\)

\(x^2-5x-x^2+6x-9=0\)

\(x-9=0\)

\(x=9\)

d) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)=0\)

\(x^3-6x^2+12x-8-x^3+8=0\)

\(-6x^2+12x=0\)

\(-6x\left(x-2\right)=0\)

\(-6x=0\) hoặc \(x-2=0\)

*) \(-6x=0\)

\(x=0\)

*) \(x-2=0\)

\(x=2\)

Vậy \(x=0;x=2\)

30 tháng 4 2021

a. 2x\(^2\)-8=0

2x\(^2\)=8

x\(^2\)=4

x=2

b.3x\(^3\)-5x=0

x(3x\(^2\)-5)=0

\(\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=^+_-\sqrt{5}\end{matrix}\right.\)

 

1 tháng 5 2021

c.x\(^4\)+3x\(^2\)-4=0\(^{\left(\cdot\right)}\)

đặt t=x\(^2\) (t>0)

ta có pt: t\(^2\)+3t-4=0 \(^{\left(1\right)}\)

thấy có a+b+c=1+3+(-4)=0 nên pt\(^{\left(1\right)}\) có 2 nghiệm

t\(_1\)=1; t\(_2\)=\(\dfrac{c}{a}\)=-4

khi t\(_1\)=1 thì x\(^2\)=1 ⇒x=\(^+_-\)1

khi t\(_2\)=-4 thì x\(^2\)=-4 ⇒ x=\(^+_-\)2

vậy pt đã cho có 4 nghiệm x=\(^+_-\)1; x=\(^+_-\)2

d)3x\(^2\)+6x-9=0

thấy có a+b+c= 3+6+(-9)=0 nên pt có 2 nghiệm

x\(_1\)=1; x\(_2\)=\(\dfrac{c}{a}=\dfrac{-9}{3}=-3\)

e. \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\)  (ĐK: x#5; x#2 )

\(\dfrac{\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}+\dfrac{3\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}\)=\(\dfrac{6\left(x-5\right)}{\left(x-5\right)\left(2-x\right)}\)

⇒2x - x\(^2\) + 4 - 2x + 6x - 6x\(^2\) + 12 - 6x - 6x +30 = 0

⇔-7x\(^2\) - 6x + 46=0

Δ'=b'\(^2\)-ac = (-3)\(^2\) - (-7)\(\times\)46= 9+53 = 62>0

\(\sqrt{\Delta'}=\sqrt{62}\)

vậy pt có 2 nghiệm phân biệt

x\(_1\)=\(\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{3+\sqrt{62}}{-7}\)

x\(_2\)=\(\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{3-\sqrt{62}}{-7}\)

vậy pt đã cho có 2 nghiệm x\(_1\)=.....;x\(_2\)=......

câu g làm tương tự câu c

 

 

c: =>(x-1)(x+1)=0

hay \(x\in\left\{1;-1\right\}\)

2 tháng 1 2022

plss

a: =>3x^2-3x-2x+2=0

=>(x-1)(3x-2)=0

=>x=2/3 hoặc x=1

b: =>2x^2=11

=>x^2=11/2

=>\(x=\pm\dfrac{\sqrt{22}}{2}\)

c: Δ=5^2-4*1*7=25-28=-3<0

=>PTVN

f: =>6x^4-6x^2-x^2+1=0

=>(x^2-1)(6x^2-1)=0

=>x^2=1 hoặc x^2=1/6

=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)

d: =>(5-2x)(5+2x)=0

=>x=5/2 hoặc x=-5/2

e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2

=>3x^2+5x-8=0 và x>=-1/2

=>3x^2+8x-3x-8=0 và x>=-1/2

=>(3x+8)(x-1)=0 và x>=-1/2

=>x=1

31 tháng 7 2021

a) \(\text{5x(x-2)+(2-x)=0}\)

\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)

b) \(\text{x(2x-5)-10x+25=0}\)

\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=2,5\end{matrix}\right.\)

 

31 tháng 7 2021

c) \(\dfrac{25}{16}-4x^2+4x-1=0\)

\(\Rightarrow\dfrac{9}{16}-4x^2+4x=0\)

\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)

\(\Rightarrow-4x^2-\dfrac{1}{2}x+\dfrac{9}{2}x+\dfrac{9}{16}=0\)

\(\Rightarrow\left(-4x^2-\dfrac{1}{2}x\right)+\left(\dfrac{9}{2}x+\dfrac{9}{16}\right)=0\)

\(\Rightarrow-\dfrac{1}{2}x\left(8x+1\right)+\dfrac{9}{16}\left(8x+1\right)=0\)

\(\Rightarrow\left(-\dfrac{1}{2}x+\dfrac{9}{16}\right)\left(8x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x+\dfrac{9}{16}=0\\8x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{-1}{8}\end{matrix}\right.\)

19 tháng 10 2021

\(a,x\left(x+9\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\\ b,\Rightarrow x\left(x^2+4x+4\right)=0\\ \Rightarrow x\left(x+2\right)^2=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ c,\Rightarrow\left(x-5-4\right)\left(x-5+4\right)=0\\ \Rightarrow\left(x-9\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\\ d,\Rightarrow3\left(x+2\right)-x\left(x+2\right)=0\\ \Rightarrow\left(x+2\right)\left(3-x\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ e,\Rightarrow x^3+6x^2+12x+8-x^3-6x^2=4\\ \Rightarrow12x=-4\Rightarrow x=-\dfrac{1}{3}\\ g,\Rightarrow\left(x+2\right)\left(x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)