GIÚP VS MN ƠI!!!
H = l x + 1 l - l x - 2 l với x < 1
CỐ GẮNG NHA, l...l LÀ DẤU GT TUYỆT ĐỐI NHÉ CÁC BN?!?!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2-x\right|+\left|x+1\right|=5\)
TH1 : \(\left|2-x\right|=\pm5\)
+ ) \(2-x=5\)
\(x=2-5\)
\(x=-3\)
+ ) \(2-x=\left(-5\right)\)
\(x=2-\left(-5\right)\)
\(x=7\)
TH2 : \(\left|x+1\right|=\pm5\)
+ ) \(x+1=5\)
\(x=5-1\)
\(x=4\)
+ ) \(x+1=\left(-5\right)\)
\(x=\left(-5\right)-1\)
\(x=-6\)
2 ) \(\left|x+1\right|+\left|2x+1\right|=22\)
TH1 : \(\left|x+1\right|=\pm22\)
+ ) \(x+1=22\)
\(x=22-1\)
\(x=21\)
+ ) \(x+1=-22\)
\(x=-22-1\)
\(x=-23\)
TH2: \(\left|2x+1\right|=\pm22\)
+ ) \(2x+1=22\)
\(2x=21\)
\(x=\frac{21}{2}\)
+ ) \(2x+1=-22\)
\(2x=-23\)
\(x=\frac{-23}{2}\)
+ Với x < -5 thì |x + 5| = -(x + 5) = -x - 5
=> -x - 5 = 4x + 1
=> -x - 4x = 1 + 5
=> -5x = 6
=> \(x=-\frac{6}{5}\), không thỏa mãn x < -5
+ Với \(x\ge-5\) thì |x + 5| = x + 5
=> x + 5 = 4x + 1
=> 4x - x = 5 - 1
=> 3x = 4
=> \(x=\frac{4}{3}\), thỏa mãn \(x\ge-5\)
Vậy \(x=\frac{4}{3}\)
\(\left|x+5\right|=4x+1\)
\(=>\left[\begin{array}{nghiempt}x+5=4x+1\\x+5=-\left(4x+1\right)=-4x-1\end{array}\right.\)
\(=>\left[\begin{array}{nghiempt}3x=4\\5x=-6\end{array}\right.\)
\(=>\left[\begin{array}{nghiempt}x=\frac{4}{3}\\x=-\frac{6}{5}\end{array}\right.\)
ta rút gọn và nhân thì ta được (4\2-7\12-9\15):(4\3-1\2-5\3)
=(120\60-35\60-36\60):(8\6-3\6-10\6)
=49\60:-5\6
= 49\-300
chúc bạn học tốt !
a) Ta có: \(\left|x+\dfrac{19}{5}\right|\ge0\forall x\in Q\)
\(\left|y+\dfrac{2017}{2018}\right|\ge0\forall y\in Q\)
\(\left|z-2019\right|\ge0\forall x\in Q\)
\(\Rightarrow\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|\ge0\forall x,y,z\in Q\)
Dấu \("="\) xảy ra khi \(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{2017}{2018}\right|=0\\\left|z-2019\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-2017}{2018}\\z=2019\end{matrix}\right.\).
b) Lại có:
\(\left|x-\dfrac{9}{5}\right|\ge0\forall x\in Q\)
\(\left|y+\dfrac{3}{4}\right|\ge0\forall y\in Q\)
\(\left|z+\dfrac{7}{2}\right|\ge0\forall z\in Q\)
\(\Rightarrow\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,zQ\)
Mà theo đề bài:
\(\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\le0\forall\)
\(\Rightarrow\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-\dfrac{9}{5}\right|=0\\\left|y+\dfrac{3}{4}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{5}\\y=\dfrac{-3}{4}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy .....
a) \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|=0\)
Ta có: \(\left|x+\dfrac{19}{5}\right|\ge0;\left|y+\dfrac{2017}{2018}\right|\ge0;\left|z-2019\right|\ge0\)
Để \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|=0\) thì:
\(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{2017}{2018}\right|=0\\\left|z-2019\right|=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-2017}{2018}\\z=2019\end{matrix}\right.\)
Vậy............................
b) Ta có: \(\left|x-\dfrac{9}{5}\right|\ge0;\left|y+\dfrac{3}{4}\right|\ge0;\left|z+\dfrac{7}{2}\right|\ge0\)
Mà \(\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\le0\) thì:
\(\left|x-\dfrac{9}{5}\right|=\left|y+\dfrac{3}{4}\right|=\left|z+\dfrac{7}{2}\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{5}\\y=\dfrac{-3}{4}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy............................
a) \(x>3\Leftrightarrow\left|x-3\right|=x-3\)
\(x< 3\Leftrightarrow\left|x-3\right|=3-x\)
b) \(x>0\Leftrightarrow\left|-2x\right|=2x\)
\(x< 0\Leftrightarrow\left|-2x\right|=-2x\)
dễ mà
=\(\left(\dfrac{3}{2}-\dfrac{7}{12}-\dfrac{3}{5}\right):\left(\dfrac{4}{3}-\dfrac{1}{2}-\dfrac{5}{3}\right)\)
= \(\left(\dfrac{90}{60}-\dfrac{35}{60}-\dfrac{36}{60}\right):\left(\dfrac{80}{60}-\dfrac{30}{60}-\dfrac{100}{60}\right)\)
= \(\dfrac{19}{60}:\dfrac{-50}{60}\)
= \(\dfrac{19.60}{60.\left(-50\right)}\)
\(\dfrac{-19}{50}\)
TH1: x<-1
Pt sẽ là \(2-x-2\left(-x-1\right)=x\)
\(\Leftrightarrow2-x+2x+2=x\)
=>x+4=x(loại)
TH2: -1<=x<2
Pt sẽ là \(2-x-2\left(x+1\right)=x\)
\(\Leftrightarrow2-x-2x-2=x\)
=>x=0(nhận)
TH3: x>=2
Pt sẽ là \(x-2-2\left(x+1\right)=x\)
=>x-2-2x-2=x
=>-x-4=x
=>-2x=4
hay x=-2(loại)
a: \(3^{x+1}\cdot3=9^4\)
\(\Leftrightarrow3^{x+2}=3^8\)
=>x+2=8
hay x=6
c: \(\left|x+\dfrac{1}{2}\right|-\dfrac{5}{3}=1\)
=>|x+1/2|=8/3
=>x+1/2=8/3 hoặc x+1/2=-8/3
=>x=13/6 hoặc x=-19/6
+ Với \(x< -1\) thì |x + 1| = -(x + 1) = -x - 1; |x - 2| = 2 - x
Ta có:
H = (-x - 1) - (2 - x)
H = -x - 1 - 2 + x
H = -3
+ Với \(-1\le x< 1\) thì |x + 1| = x + 1; |x - 2| = 2 - x
Ta có:
H = (x + 1) - (2 - x)
H = x + 1 - 2 + x
H = 2x - 1