phân tích thành nhân tử :
a3+ a2b- a2c+ b2c- abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,a^2\left(a-b\right)+ab\left(a-c\right)=a\left(a+b\right)\left(a-c\right)\\ c,=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\\ b,=\left(x-5\right)^2-9y^2=\left(x-5-3y\right)\left(x-5+3y\right)\\ d,=4\left(x^2-9x+14\right)=4\left(x-7\right)\left(x-2\right)\)
Ta có
a 4 + a 3 + a 3 b + a 2 b = a 4 + a 3 + a 3 b + a 2 b = a 3 a + 1 + a 2 b a + 1 = a + 1 a 3 + a 2 b = a + 1 a 2 a + b = a 2 a + b a + 1
Đáp án cần chọn là: A
a) \(45a^3-30a^2+5a-500=5\left(9a^3-6a^2+a-100\right)\)
b) \(a^2b-49b+14b^2-b^3=b\left(a^2-b^2+14b-49\right)=b\left[a^2-\left(b-7\right)^2\right]=b\left(a-b+7\right)\left(a+b-7\right)\)
Tick hộ tui nha 😘
a) $7a^3 - 28a^2 + 28a$
$ = 7a.(a^2 - 4a+4)$
$ = 7a.(a-2)^2$
d) $x^4 + 4$
$ = (x^4+4x^2+4) - 4x^2$
$ = (x^2+2)^2 - (2x)^2$
$ = (x^2+2x+2)(x^2-2x+2)$
Do \(0\le a,b,c\le1\)
nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)
Ta cũng có:
\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)
Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)
\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)
\(=3\)
Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)
Đề đúng là a3+ a2b- a2c+ b2c- abc+b3
=(a3+b3)+(a2c-abc+b2c)
=(a+b)(a2-ab+b2)+c(a2-ab+b2)
=(a+b+c)(a2-ab+b2)