K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2016

Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp.

Mà trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2

=> tích 4 số tự nhiên liên tiếp chia hết cho 8. (1) 

Trong 4 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (2) 

Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8. 

Mà 3 và 8 nguyên tố cùng nhau

=> tích 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3) 
 

(Bài này áp dụng tính chất: Nếu a chia hết cho b; a chia hết cho c và b và c nguyên tố cùng nhau 
=> a chia hết cho (b.c) 
+ 2 số nguyên tố cùng nhau là 2 số có ƯCLN là 1)

5 tháng 10 2016

Gọi bốn số đó là \(a,a+1,a+2,a+3\)

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)

Ta có: \(a\left(a+1\right)\left(a+2\right)⋮3\) \(\Rightarrow a\left(a+1\right)\left(a+2\right)\left(a+3\right)⋮3\)

Lại có: \(\begin{cases}a\left(a+1\right)⋮2\\\left(a+1\right)\left(a+2\right)⋮2\\\left(a+2\right)\left(a+3\right)⋮2\end{cases}\) 

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\left(a+3\right)⋮2^3=8\)

Mà: \(\text{Ư}CLN\left(3;8\right)=1\)

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\left(a+3\right)⋮3.8=24\)

26 tháng 7 2016

Gọi 5 số tự nhiên liên tiếp là:5k;5k+1;5k+2;5k+3;5k+4.

Ta có tổng 5 số:

\(5k+5k+1+5k+2+5k+3+5k+4\)+4

\(=20k+1+2+3+4\)

\(=20k+10\)

\(5.\left(2+4k\right)\) chia hết cho 5.

Phần b em làm tương tự nhé.

Chúc em học tốt^^

15 tháng 10 2019

Bài 1

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là

n+n+1+n+2=3n+3=3(n+1) chia hết cho 3

Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là

n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2

Bài 2

(Xét tính chẵn hoặc lẻ của n)

+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2

+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2

=> (n+3)(n+6) chia hết cho 2 với mọi n

6 tháng 9 2015

b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.

Theo đề bài ta có :

A = a(a + 1) (a + 2) + 6

Ta có 6 = 3x2 mà ( 3,2) = 1

A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2

A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3

      Vậy tích của 3 STN liên tiếp chia hết cho 6.

 

8 tháng 7 2017

a) Gọi hai số tự nhiên liên tiếp là a và a + 1

Nếu a chia hết cho 2 thì bài toán được chứng minh .

Nếu a không chia hết cho 2 thì  a = 2k + 1 ( k ∈ N)

Suy ra : a + 1 = 2k + 1 + 1

Ta có : 2k  ⋮  2 ; 1 + 1 = 2  ⋮  2

Suy ra  ( 2k +1 +1 ) ⋮  2 hay ( a+ 1) ⋮  2

Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2

b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2

Nếu a chia hết cho 3 thì bài toán được chứng minh

Nếu a không chia hết cho 3 thì a = 3k + 1  hoặc  a = 3k + 2 ( k ∈ N)

Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3  ⋮ 3

Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3  ⋮ 3

Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.

8 tháng 7 2017

a) Gọi hai số tự nhiên liên tiếp là a , a + 1

Nếu a chia hết cho 2 thì bài toán đã được giải

Nếu a = 2k + 1 thì a + 1 = 2k + 2, chia hết cho 2

b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2

Nếu a chia hết cho 3 thì bài toán đã được giải

Nếu a = 3k + 1 thì a + 2 = 3k + 3 , chia hết cho 3

Nếu a = 3k + 2 thì a + 1 = 3k + 3 , chia hết cho 3

Bài này mik học rồi nên mik chắc chắn đúng luôn

9 tháng 7 2018

Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi

22 tháng 2 2020

a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3 
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5

chúc bạn học tốt !!!

18 tháng 10 2017

Gọi 2 số chẵn liên tiếp là 2k và 2k + 2, ta có:
A = 2k(2k + 2) = 4k(k + 1)
Ta thấy A chia hết cho 4 và A chia hết cho 2 (do k và k + 1 là 2 số tự nhiên liên tiếp)
=> A chia hết cho 8

13 tháng 10 2018

Gọi 2 số tự nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

  • Nếu:  a = 2k thì chia hết cho 2  
  • Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm