Bài 1: \(\left(2x+1\right)^3=9\left(2x+1\right)\)
Bài 2: Tìm GTNN của \(A=\left(2x-1\right)^2+\left(3-y\right)^2+2017\)
M.n giúp mk nha. Mk cảm ơn m.n nhiều!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\left(2x-6\right)-4\left(1+2x\right)-2\left(x-4\right)=4-3\left(1+2x\right)-5\left(1-2x\right).\)
\(\Leftrightarrow6x-18-4-8x-2x+8=4-3-6x-5+10x\)
\(\Leftrightarrow-4x-14=4x-4\)
\(\Leftrightarrow-4x-4x=-4+14\)
\(\Leftrightarrow-8x=10\)
\(\Leftrightarrow x=-\frac{5}{4}\)
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x 2 -4x+1-4x 2+25=18
26-4x=18
4x=8
x=2
a,27x-18=2x-3x^2
<=> 3x^2-2x+27-18x=0
<=> 3x^2-20x+27=0
\(\Delta\)= 20^2-4-12.27
tính \(\Delta\)rồi tìm x1 ,x2
\(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x^2-3x\right|=0\\\left|\left(x+1\right)\left(x-3\right)\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-3x=0\\\left(x+1\right)\left(x-3\right)=0\end{cases}}\)
Xét \(x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Xét \(\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vì xét 2 trị biểu thức , một cái có 2 giá trị (0 or 3) , một cái (-1 or 3)
Nên ta lấy cái chung
=> x = 3
a) \(A=3\left|2x-\dfrac{3}{2}\right|+2021^0=3\left|2x-\dfrac{3}{2}\right|+1\ge1\)
\(minA=1\Leftrightarrow2x=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{4}\)
b) \(B=2\left|x-6\right|+3\left(2y-1\right)^2+2021^0=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\)
\(minB=1\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(A=3\left|2x-\dfrac{3}{2}\right|+1\ge1\\ A_{min}=1\Leftrightarrow2x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{4}\\ B=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(\left(2x-1\right)^2-3.\left(x+2\right)^2=4.\left(x-2\right)-5.\left(x-1\right)^2\)
\(\Leftrightarrow4x^2-4x+1-3\left(x^2+4x+4\right)=4x-8-5.\left(x^2-2x+1\right)\)
\(\Leftrightarrow4x^2-4x+1-3x^2-7x-12=4x-8-5x^2+10x-5\)
\(\Leftrightarrow x^2-11x-11=14x-13-5x^2\)
\(\Leftrightarrow6x^2-25x+2=0\)
Tự làm tiếp nha
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
Bài 1:
\(\left(2x+1\right)^3=9\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)^3-9\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left[\left(2x+1\right)^2-9\right]=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x+1-3\right)\left(2x+1+3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-2\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=0\\2x-2=0\\2x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=1\\x=-2\end{array}\right.\)
Bài 2:
\(A=\left(2x-1\right)^2+\left(3-y\right)^2+2017\)
Vì: \(\left(2x-1\right)^2+\left(3-y\right)^2\ge0\)
=> \(\left(2x-1\right)^2+\left(3-y\right)^2+2017\ge2017\)
Dấu "=" xảy ra khi \(x=\frac{1}{2};y=3\)
Vậy GTNN của A là 2017 khi \(x=\frac{1}{2};y=3\)
Bài 1:
(2x + 1)3 = 9.(2x + 1)
=> (2x + 1)3 - 9.(2x + 1) = 0
=> (2x + 1).[(2x + 1)2 - 9] = 0
=> (2x + 1).(2x + 1 - 3).(2x + 1 + 3) = 0
=> (2x + 1).(2x - 2).(2x + 4) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}2x+1=0\\2x-2=0\\2x+4=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x=-1\\2x=2\\2x=-4\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-1}{2}\\x=1\\x=-2\end{array}\right.\)
Vậy \(x\in\left\{\frac{-1}{2};1;-2\right\}\)
Bài 2:
Có: \(\left(2x-1\right)^2\ge0;\left(3-y\right)^2\ge0\forall x;y\)
=> \(A=\left(2x-1\right)^2+\left(3-y\right)^2+2017\ge2017\)
Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}\left(2x-1\right)^2=0\\\left(3-y\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}2x-1=0\\3-y=0\end{cases}\)\(\Rightarrow\begin{cases}2x=1\\y=3\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=3\end{cases}\)
Vậy GTNN của A là 2017 khi và chỉ khi \(x=\frac{1}{2};y=3\)