Thực hiện phép tính
B=\(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).....\left(1-\frac{1}{1+2+3+...+2016}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(1:\frac{1}{4}\right).4+25\left(1:\frac{16}{9}:\frac{125}{64}\right):\left(-\frac{27}{8}\right)\)
\(=4.4+25.\frac{36}{125}:\frac{-27}{8}\)
\(=16-\frac{32}{15}=\frac{240}{15}-\frac{32}{15}=\frac{208}{15}\)
\(=\frac{12}{7}\cdot\frac{3}{4}-\frac{6}{7}\cdot\frac{4}{3}+\frac{6}{7}\)
\(=\frac{6}{7}\left(\frac{3}{2}-\frac{4}{3}+1\right)\)
\(=\frac{6}{7}\left(\frac{1}{6}+1\right)=\frac{6}{7}\cdot\frac{7}{6}=1\)
2.
\(=2017\cdot2018\cdot\left[\left(2016\cdot2018\right)-\left(2016\cdot2017\right)\right]\)
\(=2017\cdot2018\cdot2016\left(2018-2017\right)=2016\cdot2017\cdot2018\)
3.
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{99}{100}\)
\(=\frac{1}{100}\)
4.
\(=\frac{1+2+2^2+2^4+...+2^9}{2\left(1+2+2^2+2^3+2^4+...+2^9\right)}\)
\(=\frac{1}{2}\)
mình chỉ làm được câu 3 thôi
có \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)....\left(\frac{1}{100}-1\right)\)
\(=\frac{-1}{2}\times\frac{-2}{3}\times....\times\frac{-99}{100}\)
\(=\frac{\left(-1\right)\left(-2\right)....\left(-99\right)}{2\times3\times....\times100}\)
\(=\frac{-\left(1\times2\times....\times99\right)}{2\times3\times....\times100}\)
\(=\frac{-1}{100}\)
\(A=(1-\frac{1}{1+2})(1-\frac{1}{1+2+3})(1-\frac{1}{1+2+3+4})...(1-\frac{1}{1+2+3+...+2006})\)
\(A=(1-\frac{1}{3})(1-\frac{1}{6})(1-\frac{1}{10})...(1-\frac{1}{2013021})\)
\(A=\frac{2}{3}\cdot\frac{5}{6}\cdot\frac{9}{10}....\frac{2013020}{2013021}\)
Sorry bạn máy tính mình có chút vấn đề để mk làm tiếp :
\(A=\frac{4}{6}\cdot\frac{10}{12}\cdot\frac{18}{20}....\cdot\frac{4026040}{4026042}\)
\(A=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot\frac{3\cdot6}{4\cdot5}\cdot...\cdot\frac{2005\cdot2008}{2006\cdot2007}\)
\(A=\frac{1\cdot2\cdot3\cdot...\cdot2005}{2\cdot3\cdot4\cdot...\cdot2006}\cdot\frac{4\cdot5\cdot6\cdot...\cdot2008}{3\cdot4\cdot5\cdot...\cdot2007}\)
\(A=\frac{1}{2006}\cdot\frac{2008}{3}=\frac{1004}{3009}\)
P/S : Hoq chắc :>
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+...+\frac{1}{16}.\frac{16.17}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(=\frac{\frac{17.18}{2}-1}{2}=76\)