Chứng minh định lí: Nếu đường thẳng c'c cắt hai đường thẳng a'a, b'b và trong các góc tạo thành có một cặp góc đồng vị bằng nhau thì các cặp góc đồng vị còn lại cũng bằng nhau (vẽ hình, ghi giả thiết, kết luận).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\widehat {{A_1}} = \widehat {{B_1}}\) (gt)
\(\widehat {{A_3}} = \widehat {{A_1}}\) (2 góc đối đỉnh)
\( \Rightarrow \widehat {{A_3}} = \widehat {{B_1}}\) ( cùng bằng \(\widehat {{A_1}}\))
Mà \(\widehat {{A_2}} + \widehat {{A_3}} = 180^\circ ;\widehat {{B_1}} + \widehat {{B_4}} = 180^\circ \) ( 2 góc kề bù)
\( \Rightarrow \widehat {{A_2}} = \widehat {{B_4}}\)
- Gỉa thiết: Một đường thẳng cắt 2 đường thẳng phân biệt và trong số các góc tạo thành có một cặp góc so le trong bằng nhau
- Kết luận: Các góc đồng vị bằng nhau
giả thiết luôn luôn đứng trước chữ thì còn kết luận sẽ đứng sau chữ thì ok bạn vẽ hình ra tìm đâu là cặp góc SlT rồi chứng minh nó bằng nhau thì ta suy ra đc các góc đồng vị bằng nhau trong sách hình như có hướng dẫn mà
GT: Nếu đường thẳng c cắt hai đường thẳng a và b thì trong các góc tạo thafnhcos một cặp góc so le trong bằng nhau
KL: Thì hai góc so le trong còn lại bằng nhau, hai hóc đồng vị bằng nhau
Học tốt!!!
Vì đường thẳng c cắt hai đường thẳng a và b tạo thành một cặp góc so le trong ( góc A4 và B3) bằng nhau nên a // b ( Dấu hiệu nhận biết 2 đường thẳng song song)
Vì a // b nên theo tính chất của 2 đường thẳng song song:
a) Các so le trong bằng nhau
b) Các góc đồng vị bằng nhau