Cho a, b là các số không âm. Chứng minh rằng \(\sqrt{a}+\sqrt{b}\) >= \(\sqrt{a+b}\). Dấu bằng xảy ra khi nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng BĐT AM-GM ta có:
\(x+y\ge2\sqrt{xy}\)
\(\Rightarrow\)\(\frac{x+y}{2}\ge\sqrt{xy}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
b) Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
áp dụng BĐT cô-si ta có:
\(\frac{a+b}{2}=\frac{a}{2}+\frac{b}{2}\)\(\ge2\sqrt{\frac{a}{2}.\frac{b}{2}}=2\frac{\sqrt{a}\sqrt{b}}{\sqrt{4}}=2\frac{\sqrt{ab}}{2}=\sqrt{ab}\)
Vậy \(\frac{a+b}{2}\ge\sqrt{ab}\)
Dấu đẳng thức xảy ra khi a=b=0 hoặc a=b=1
3.1
Xét hiệu :
\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)
\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)
Dấu bằng xảy ra : \(\Leftrightarrow a=b\)
3.2
Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:
\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)
Mà : \(a+b+c=1\left(gt\right)\)
nên : \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )
Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)
\(\Rightarrow b+c\ge16abc\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)
Nếu n= 2, tức có hai giá trị x1 và x2, và từ giả thiết ở trên, ta có:
điều phải chứng minh - ở đây \(x_1=a;x_2=b\)
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\)
-Dấu đẳng thức trên xảy ra khi: Trung bình cộng lớn hơn hoặc bằng trung bình nhân
Ta có:
\(\left(\sqrt{a}+\sqrt{b}\right)^2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}\right)^2+\sqrt{a}.\sqrt{b}+\sqrt{b}.\sqrt{a}+\left(\sqrt{b}\right)^2\)
\(=a+b+2\sqrt{a}.\sqrt{b}\)
\(=\left(\sqrt{a+b}\right)^2+2\sqrt{a}.\sqrt{b}\)
Vì \(\sqrt{a}\ge0,\sqrt{b}\ge0\) nên \(2\sqrt{a}.\sqrt{b}\ge0\) cho nên
\(\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a+b}\right)^2=2\sqrt{a}.\sqrt{b}\ge0\).
Tức là \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge\left(\sqrt{a+b}\right)^2,\) suy ra \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
Đẳng thức \(\sqrt{a}+\sqrt{b}=\sqrt{a+b}\) xảy ra chỉ khi \(\sqrt{a}.\sqrt{b}=0\)
tức là khi \(\sqrt{a}=0\) hoặc \(\sqrt{b}=0\), hay là \(a=0\) hoặc \(b=0\).
Bạn j ơi. Bạn giúp mk trả lời bài mk đăng mà chưa ai chả lời đk ko bạn. Mk cần gấp lắm bạn
Áp dụng \(\dfrac{\left(x+y\right)^2}{4}\ge xy\):
\(2\sqrt{ab}\left(a+b\right)\le\dfrac{\left(2\sqrt{ab}+a+b\right)^2}{4}=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^4}{4}=\dfrac{1}{4}\)
<=> \(\sqrt{ab}\left(a+b\right)\le\dfrac{1}{8}\)
<=> \(ab\left(a+b\right)^2\le\dfrac{1}{64}\) => 64ab(a+b)2 \(\le1\)
Dấu "=" <=> a = b = \(\dfrac{1}{4}\)
Bất đẳng thức cần chứng minh tương đương:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
Ta có: \(\frac{a^2}{b}+3b=\frac{a^2+b^2}{b}+2b\ge2\sqrt{2\left(a^2+b^2\right)}\)(Theo BĐT Cô - si)
Tương tự ta có: \(\frac{b^2}{c}+3c\ge2\sqrt{2\left(b^2+c^2\right)}\);\(\frac{c^2}{a}+3a\ge2\sqrt{2\left(c^2+a^2\right)}\)
Cộng theo vế của 3 BĐT trên, ta được:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+3\left(a+b+c\right)\ge\)\(2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(c^2+a^2\right)}\)
Cần chứng minh \(2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(c^2+a^2\right)}\)\(-3\left(a+b+c\right)\)
\(\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
hay \(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\ge a+b+c\)(*)
Sử dụng BĐT quen thuộc: \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(Đẳng thức xảy ra khi x = y)
Khi đó ta được: \(\sqrt{\frac{a^2+b^2}{2}}\ge\frac{a+b}{2}\);\(\sqrt{\frac{b^2+c^2}{2}}\ge\frac{b+c}{2}\);\(\sqrt{\frac{c^2+a^2}{2}}\ge\frac{c+a}{2}\)
Cộng theo vế của 3 BĐT trên, ta được:
\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\ge a+b+c\)(đúng với (*))
Đẳng thức xảy ra khi a = b = c
a2/b + b2/c + c2/a >= 1/can2 ( can(a2+b2) + ... )
Xét can( (a2+b2)/2 ) = can ( ( (a2/b + b)/2 )nhân(b) ) nhỏ hơn hoặc bằng (a2/b + b)/4 + b/2
Tương tự vậy ta có vế phải nhỏ hơn hoặc bằng 1/4 VT cộng với 3/4(a+b+c)
Mà VT chứng minh theo BCS lớn hơn hoặc bằng a+b+c
Suy ra VT lớn hơn hoặc bằng VP
Dấu bằng tự tìm
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
\(\Leftrightarrow a+b+2\sqrt{ab}\ge a+b\)
\(\Leftrightarrow a+b+2\sqrt{ab}-a-b\ge0\)
\(\Leftrightarrow2\sqrt{ab}\ge0\) luôn luôn đúng với \(a,b\ge0\)
=> đpcm