Tìm a,b khác nhau thuộc Z sao cho \(\frac{1}{a}\)-\(\frac{1}{b}\)= \(\frac{1}{a}\). \(\frac{1}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qui đồng lên là đc
1/a-1/b=b-a/ab=1/ab
Vậy b-a=1 hay b=a+1 với mọi a,b nguyên(a,b#0)
hok tốt
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{bc+ac+ab}{abc}\)
Vì \(\frac{bc+ac+ab}{abc}\)= 1 nên bc + ac + ab = abc. Suy ra a = 1 thì b = 2, c = 3 hoặc b = 3, c = 2; a = 2 thì b = 1, c = 3 hoặc b = 3, c = 1; a = 3 thì b = 2, c = 1 hoặc b = 1, c = 2
Ta có: \(\frac{1}{x\left(a-b\right)\left(a-c\right)}+\frac{1}{y\left(b-a\right)\left(b-c\right)}+\frac{1}{z\left(c-a\right)\left(c-b\right)}\)
\(=\frac{1}{x\left(a-b\right)\left(a-c\right)}-\frac{1}{y\left(a-b\right)\left(b-c\right)}+\frac{1}{z\left(a-c\right)\left(b-c\right)}\)
\(=\frac{yz\left(b-c\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}-\frac{xz\left(a-c\right)}{yxz\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{xy\left(a-b\right)}{zxy\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)
\(=\frac{yz\left(b-c\right)-xz\left(a-c\right)+xy\left(a-b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)\(=\frac{yz\left(b-c\right)-xz\left[\left(b-c\right)+\left(a-b\right)\right]+xy\left(a-b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{yz\left(b-c\right)-xz\left(b-c\right)-xz\left(a-b\right)+xy\left(a-b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(b-c\right)z\left(y-x\right)-\left(a-b\right)x\left(z-y\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(b-c\right)z\left(c+a-b-b-c+a\right)-\left(a-b\right)x\left(a+b-c-c-a+b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(b-c\right)z\left(2a-2b\right)-\left(a-b\right)x\left(2b-2c\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(b-c\right)2z\left(a-b\right)-\left(a-b\right)2x\left(b-c\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a-b\right)\left(b-c\right)\left(2z-2x\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{2\left(z-x\right)}{xyz\left(a-c\right)}=\frac{2\left(a+b-c-b-c+a\right)}{xyz\left(a-c\right)}\)
\(=\frac{2\left(2a-2c\right)}{xyz\left(a-c\right)}=\frac{2.2\left(a-c\right)}{xyz\left(a-c\right)}=\frac{4}{xyz}\Rightarrowđpcm\)
Xét VT:
\(\frac{1}{a}-\frac{1}{b}=\frac{b}{ab}-\frac{a}{ab}=\frac{b-a}{ab}=\frac{1}{a}.\frac{1}{b}\)
Mà \(\frac{1}{a}.\frac{1}{b}=\frac{1}{ab}\) => \(\frac{b-a}{ab}=\frac{1}{ab}\Rightarrow b-a=1\)
Vậy a,b là số nguyên liên tiếp từ thỏa mãn đề bài.
Xét VT:
\(\frac{1}{a}-\frac{1}{b}=\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a}.\frac{1}{b}\)
Mà \(\frac{1}{a}.\frac{1}{b}=\frac{1}{ab}\) => \(\frac{b-a}{ab}=\frac{1}{ab}\Rightarrow b-a=1\)
Vậy a,b là số nguyên liên tiếp thì thỏa mãn đề bài.