\(\left(x-y\right)^2+\left(x+1\right)^2+\left(y-5\right)^2+2001\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5) \(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)\)
\(=\left(x-y\right)^2-2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left[\left(x-y\right)-\left(x+y\right)\right]^2\)
\(=\left(x-y-x-y\right)^2\)
\(=\left(-2y^2\right)\)
\(=4y^2\)
6) \(\left(5-x\right)^2+\left(x+5\right)^2-\left(2x+10\right)\left(x-5\right)\)
\(=\left(x-5\right)^2-2\left(x-5\right)\left(x+5\right)+\left(x+5\right)^2\)
\(=\left[\left(x-5\right)-\left(x+5\right)\right]^2\)
\(=\left(x-5-x-5\right)^2\)
\(=\left(-10\right)^2=100\)
7) \(\left(x-2\right)^2+\left(x+1\right)^2+2\left(x-2\right)\left(-1-x\right)\)
\(=\left(x-2\right)^2-2\left(x-2\right)\left(x+1\right)+\left(x+1\right)^2\)
\(=\left[\left(x-2\right)-\left(x+1\right)\right]^2\)
\(=\left(-3\right)^2=9\)
8) \(-\left(2x+3y\right)^2+\left(2x-3y\right)^2-2\left(4x^2-9y^2\right)\)
\(=\left(2x-3y\right)^2+2\left(2x+3y\right)\left(2x-3y\right)+\left(2x+3y\right)^2\)
\(=\left[\left(2x+3y\right)+\left(2x-3y\right)\right]^2\)
\(=\left(4x\right)^2=16x^2\)
a) Ta có: \(\left\{{}\begin{matrix}2\left(x+1\right)-3\left(y-2\right)=5\\-4\left(x-2\right)+5\left(y-3\right)=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2-3y+6=5\\-4x+8+5y-15=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-3\\-4x+5y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-6y=-6\\-4x+5y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=0\\2x-3y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x-3\cdot0=-3\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=0\end{matrix}\right.\)
Vậy: hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=0\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}8\left(x-3\right)-3\left(y+1\right)=-2\\3\left(x+2\right)-2\left(1-y\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8x-24-3y-3=-2\\3x+6-2+2y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8x-3y=25\\3x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24x-9y=75\\24x+16y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-25y=67\\3x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-67}{25}\\3x=1-2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=1-2\cdot\dfrac{-67}{25}=\dfrac{159}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=\dfrac{53}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{53}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)
a) HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-3\\-4x+5y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x-6y=-6\\-4x+5y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-y=0\\x=\dfrac{3y-3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(-\dfrac{3}{2};0\right)\)
b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}8x-3y=25\\3x+2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}16x-6y=50\\9x+6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}25x=53\\y=\dfrac{1-3x}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{53}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(\dfrac{53}{25};-\dfrac{67}{25}\right)\)
a: \(y=\left(x+2\right)\left(2x^2-3\right)\)
=>\(y'=\left(x+2\right)'\left(2x^2-3\right)+\left(x+2\right)\left(2x^2-3\right)'\)
=>\(y'=2x^2-3+\left(x+2\right)\cdot2x\)
\(\Leftrightarrow y'=2x^2-3+2x^2+4x=4x^2+4x-3\)
b: \(y=\left(x-1\right)^2\left(x+2\right)\)
=>\(y=\left(x^2-2x+1\right)\left(x+2\right)\)
=>\(y'=\left(x^2-2x+1\right)'\left(x+2\right)+\left(x^2-2x+1\right)\left(x+2\right)'\)
=>\(y'=\left(2x-2\right)\left(x+2\right)+\left(x^2-2x+1\right)\)
=>\(y'=2x^2+4x-2x-4+x^2-2x+1\)
=>\(y'=3x^2-3\)
c: \(y=\left(x^2-1\right)\left(2x+1\right)\)
=>\(y'=\left(x^2-1\right)'\left(2x+1\right)+\left(x^2-1\right)\left(2x+1\right)'\)
=>\(y'=2x\left(2x+1\right)+2\left(x^2-1\right)\)
=>\(y'=4x^2+2x+2x^2-2=6x^2+2x-2\)
d: \(y=\left(x+2\right)\left(2x^2-5\right)\)
=>\(y'=\left(x+2\right)'\left(2x^2-5\right)+\left(x+2\right)\left(2x^2-5\right)'\)
=>\(y'=2x^2-5+2x\left(x+2\right)=4x^2+4x-5\)
\(ĐK:x,y\in R\)
Từ 2 PT \(\Leftrightarrow\sqrt{\left(x+1\right)^2+\left(y-1\right)^2}=\sqrt{\left(x-5\right)^2+\left(y+1\right)^2}\)
\(\Leftrightarrow x^2+2x+y^2-2y+2=x^2-10x+y^2+2y+26\\ \Leftrightarrow12x-4y-24=0\\ \Leftrightarrow3x-y-6=0\\ \Leftrightarrow y=3x-6\)
Thay vào \(PT\left(1\right)\Leftrightarrow\sqrt{\left(x-1\right)^2+\left(3x-8\right)^2}=\sqrt{\left(x+1\right)^2+\left(3x-7\right)^2}\)
\(\Leftrightarrow10x^2-50x+65=10x^2-40x+50\\ \Leftrightarrow10x=15\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow y=-\dfrac{3}{2}\)
Vậy hệ có nghiệm \(\left(x;y\right)=\left(\dfrac{3}{2};-\dfrac{3}{2}\right)\)
\(a,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=2x^2+2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3\left(x^2+y^2\right)\)\(b,\left(5x-1\right)+2\left(1-5x\right)\left(4x+5\right)+\left(5x+4\right)\)\(=\left[\left(5x-1\right)-\left(5x+4\right)\right]^2=25\)
c)\(Q=\left(x-y\right)^3+\left(x+y\right)^3+\left(x-y\right)^3-3xy\left(x+y\right)\)
\(=x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-3xy^2-3x^2y\)
\(=x^3+y^3\)
d)\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(2P=5^{32}-1\Rightarrow P=\dfrac{5^{32}-1}{2}\)
a: \(x^3-2y^2=2^3-2\cdot\left(-2\right)^2=8-2\cdot4=0\)
=>\(C=x\left(x^2-y\right)\left(x^3-2y^2\right)\left(x^4-3y^3\right)\left(x^5-4y^4\right)=0\)
b: x+y+1=0
=>x+y=-1
\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x^2-y^2\right)+2\left(x+y\right)+3\)
\(=x^2\cdot\left(-1\right)-y^2\left(-1\right)+\left(x^2-y^2\right)+2\cdot\left(-1\right)+3\)
\(=-x^2+y^2+x^2-y^2-2+3\)
=1
2. CMR:
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
Ta có: VT=\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5=x^5-y^5=VP\)=> đpcm.
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)
Ta có: VT=\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5=VP\)
=> đpcm.
c. \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)
\(\Leftrightarrow x^2+bx+ax+ab=x^2+ax+bx+ab\) (đúng)
=> đpcm.
ĐKXĐ: \(x\ge-2;y\ge0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) pt đầu trở thành:
\(a\left(a^2+1\right)=b\left(ab+1\right)\)
\(\Leftrightarrow a^3+a=ab^2+b\)
\(\Leftrightarrow a^3-ab^2+a-b=0\)
\(\Leftrightarrow a\left(a^2-b^2\right)+a-b=0\)
\(\Leftrightarrow a\left(a-b\right)\left(a+b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+1\right)=0\)
\(\Leftrightarrow a-b=0\) (do \(a^2+ab+1>0;\forall a\ge0;b\ge0\))
\(\Leftrightarrow\sqrt{x+2}=\sqrt{y}\)
\(\Rightarrow y=x+2\)
Thế vào pt dưới:
\(x^2+\left(x+3\right)\left(x+3\right)=x+16\)
\(\Leftrightarrow2x^2+5x-7=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=3\\x=-\dfrac{7}{2}< -2\left(loại\right)\end{matrix}\right.\)
tìm GTNN nha