Tìm x , để
\(\frac{-7}{2-x}\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm mẫu thôi, bên dưới tương tự bạn nhé
a, \(\frac{\sqrt{x}+6}{\sqrt{x}-3}=\frac{\sqrt{x}-3+9}{\sqrt{x}-3}=1+\frac{9}{\sqrt{x}-3}\)ĐK : \(x\ge0;x\ne9\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\sqrt{x}-3\) | 1 | -1 | 3 | -3 | 9 | -9 |
x | 16 | 4 | 36 | 0 | 144 | loại |
P = \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\). \(\frac{\left(x-1\right)^2}{2}\)( x\(\ge0\); x\(\ne\)1)
= \(\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\) . \(\frac{\left(x-1\right)^2}{2}\)
= \(\frac{x-\sqrt{x}+2-x-\sqrt{x}+2}{\sqrt{x}-1}\). \(\frac{x-1}{2}\)
= \(\frac{\left(-2\sqrt{x}+4\right)\left(\sqrt{x}+1\right)}{2}\)
= \(\left(\sqrt{x}+1\right)\left(2-\sqrt{x}\right)\)
= -x2 + \(\sqrt{x}\)+ 2
b. tự tính nha
c, P = -x2 + \(\sqrt{x}+2\)
= - (x2 - 2.x.1/2 + 1/4) +2 +1/4
= - (x-1/2)2+ 9/4
ta có (x - 1/2)2 \(\ge0\forall x\)\(\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\forall x\)
dấu "=" xảy ra khi và chỉ khi x-1/2 = 0
x=1/2
vậy GTLN của P= 9/4 khi và chỉ khi x=1/2
#mã mã#
a/ \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}.\frac{18}{x}}=...\)
b/ \(\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=...\)
c/ \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}.\frac{1}{x+1}}-\frac{3}{2}=...\)
d/ \(\frac{x}{3}+\frac{5}{2x-1}=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{2x-1}{6}.\frac{5}{2x-1}}+\frac{1}{6}=...\)
e/ \(\frac{x}{1-x}+\frac{5}{x}=\frac{x}{1-x}+\frac{5-5x+5x}{x}=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}+5=...\)
f/ \(\frac{x^3+1}{x^2}=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge2\sqrt{\frac{x}{2}.\frac{x}{2}.\frac{1}{x^2}}=...\)
g/ \(\frac{x^2+4x+4}{x}=x+\frac{4}{x}+4\ge2\sqrt{x.\frac{4}{x}}+4=...\)
\(a,ĐKXĐ:x\ge0;x\ne4\)
Ta có: \(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}-\frac{5\sqrt{x}+2}{x-4}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2x-4\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
Vậy....
\(b,ĐKXĐ:x\ge0;x\ne4\)
\(ĐểP=2\Rightarrow\frac{3\sqrt{x}}{\sqrt{x}+2}=2\)
\(\Leftrightarrow2\left(\sqrt{x}+2\right)=3\sqrt{x}\)
\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)
\(\Leftrightarrow3\sqrt{x}-2\sqrt{x}=4\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\text{(Thỏa mãn ĐKXĐ)}\)
Vậy...
a)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}-\frac{5\sqrt{x}+2}{x-4}\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
b) Thay P = 2 vào , ta được :
\(2=\frac{3\sqrt{x}}{\sqrt{x}+2}\Leftrightarrow2\sqrt{x}+4=3\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
Vậy x = 16 thì P = 2
a) biểu thức có nghĩa khi và chỉ khi: \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}+3\ne0\\\sqrt{x}-3\ne0\\x-9\ne0\end{cases}\Leftrightarrow x\ne9}\) và \(x\ge0\)
b) \(Q=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3\sqrt{x}}{\sqrt{x}+3}\)
c) để Q < 1 thì:
\(\frac{3\sqrt{x}}{\sqrt{x}+3}< 1\)đkxđ: \(x\ge0\)
\(\Leftrightarrow\frac{3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}< 0\)
\(\Leftrightarrow\frac{2\sqrt{x}-3}{\sqrt{x}+3}< 0\)(1)
do \(\sqrt{x}+3>0\forall x\)
\(\Rightarrow\left(1\right)< 0\)khi và chỉ khi \(2\sqrt{x}-3< 0\)
\(\Leftrightarrow2\sqrt{x}< 3\Leftrightarrow\sqrt{x}< \frac{3}{2}\Leftrightarrow x< \frac{9}{4}\)
kết hợp với điều kiện ban đầu \(\Rightarrow Q< 1khi0\le x< \frac{9}{4}\)
\(\frac{-7}{2-x}\ge0\)
\(\Rightarrow2-x