Tìm hai số x và y, biết : x : 2 = y : (-5) và x - y = -7
giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng dãy tỉ số bằng nhau:
b.
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=-5.\left(-1\right)=5\end{matrix}\right.\)
d.
\(\dfrac{4}{x}=\dfrac{7}{y}\Rightarrow\dfrac{y}{7}=\dfrac{x}{4}=\dfrac{y-x}{7-4}=\dfrac{-12}{3}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.\left(-4\right)=-16\\y=7.\left(-4\right)=-28\end{matrix}\right.\)
hiệu số phần bằng nhau là : 3 - 2 = 1
y là : 72 : 1 x 2 = 144
x là : 144 + 72 = 216
ĐS /...........................
Hiệu số phần bằng nhau là:
3 - 2 = 1 (phần)
Số bé x là:
72 : 1 x 3 = 216
Số lớn y là :
216 + 72 = 288
ĐS: x = 216 và y = 288
Ta có : \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)
\(\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{7}\right)^2=\left(\frac{z}{3}\right)^2=\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}\)\(=\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
\(\Rightarrow x=9.5=45\)
\(y=9.7=63\)
\(z=9.3=27\)
\(\frac{x}{2}\)=\(\frac{y}{-5}\)=\(\frac{x-y}{2-\left(-5\right)}\)=\(\frac{-7}{7}\) = -1 \(\Rightarrow\)x = -1 × 2 = -2 \(\Rightarrow\)y = -1 × -5 = 5
x/2=y/-5 và x-y=-7
x-y=-7 =>x=y-7 thế vào x/2=7/-5 được (y-7)/2=y/-5 =>y=5 =>x=-2
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\)
Do đó: x=12; y=16
\(a,Sửa:\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=16\end{matrix}\right.\\ b,\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2+5}=\dfrac{-7}{7}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)
\(5x=7y\Rightarrow\frac{x}{7}=\frac{y}{5}\)
Theo t/c dãy tỉ số bằng nhau:
\(\frac{x}{7}=\frac{y}{5}=\frac{x-y}{7-5}=\frac{18}{2}=9\)
=> \(\frac{x}{7}=9\Rightarrow x=9.7=63\)
=> \(\frac{y}{5}=9\Rightarrow y=9.5=45\)
Vậy x = 63, y = 45.
\(5x=7y\Rightarrow\frac{x}{7}=\frac{y}{5}\)
\(=\frac{x-y}{7-5}=\frac{18}{2}=9\)
\(\Rightarrow\hept{\begin{cases}x=63\\y=45\end{cases}}\)
1. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)
2. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)
Ta có: x/3 = y/4 => 4x = 3y
Mà x + y = 28 => 4(x + y) = 4.28 => 4x + 4y = 112
Do đó 3y + 4y = 112
=> 7y = 112
=> y = 112/7 = 16
=> x = 28 - 16 = 12
b, Tương tự nha bạn
a) Áp dụng t/c dtsbn
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{28}{7}=4\)
\(\Rightarrow x=4.3=12\)
\(y=4.4=16\)
\(\frac{x}{2}=\frac{y}{-5}\) và \(x-y=-7\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2+5}=\frac{-7}{7}=-1\)
=> \(\begin{cases}x=-2\\x=5\end{cases}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=-\frac{y}{5}=\frac{x-y}{2+5}=-\frac{7}{7}=-1\)
\(\left[\begin{array}{nghiempt}\frac{x}{2}=-1\\\frac{y}{-5}=-1\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=-2\\y=5\end{array}\right.\)