K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

Hỏi đáp Toán

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

+) ABCD là hình thoi nên cũng là hình bình hành

 Áp dụng quy tắc hình bình hành ta có:

 \(\overrightarrow p  = \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

 \(\Rightarrow  |\overrightarrow p|  = | \overrightarrow {AC}| =AC \)

+) \(\overrightarrow u  = \overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {DB} \)

 \(\Rightarrow  |\overrightarrow u|  = | \overrightarrow {DB}| =DB\)

+) \(\overrightarrow v  = 2\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {AB}  + \left( {\overrightarrow {AB}  - \overrightarrow {AC} } \right) = \overrightarrow {AB}  + \overrightarrow {CB} \)\( = \overrightarrow {AB}  + \overrightarrow {DA}  = \overrightarrow {DB} \)

 \(\Rightarrow  |\overrightarrow v|  = | \overrightarrow {DB}| =DB\)

+ Tính \(AC, DB\)

Tam giác ABD có \(AB=AD=a, \widehat A = 60^o\) nên nó là tam giác đều. Do đó DB = a.

Gọi O là giao điểm hai đường chéo.

Ta có: \(AO = AB. \sin B = a. \sin 60^o = \frac {a \sqrt 3}{2} \Rightarrow  AC = a \sqrt 3\)

Vậy \(|\overrightarrow p|  =  a \sqrt 3 ,|\overrightarrow u|  =  a, |\overrightarrow v|  =  a.\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Do ABCD cũng là một hình bình hành nên \(\overrightarrow {DA}  + \overrightarrow {DC}  = \overrightarrow {DB} \)

\( \Rightarrow \;|\overrightarrow {DA}  + \overrightarrow {DC} |\; = \;|\overrightarrow {DB} |\; = DB = a\sqrt 2 \)

b) Ta có: \(\overrightarrow {AD}  + \overrightarrow {DB}  = \overrightarrow {AB} \) \( \Rightarrow \overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {DB} \)

\( \Rightarrow \left| {\overrightarrow {AB}  - \overrightarrow {AD} } \right| = \left| {\overrightarrow {DB} } \right| = DB = a\sqrt 2 \)

c) Ta có: \(\overrightarrow {DO}  = \overrightarrow {OB} \)

\( \Rightarrow \overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow {OA}  + \overrightarrow {DO}  = \overrightarrow {DO}  + \overrightarrow {OA}  = \overrightarrow {DA} \)

\( \Rightarrow \left| {\overrightarrow {OA}  + \overrightarrow {OB} } \right| = \left| {\overrightarrow {DA} } \right| = DA = a.\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(AC = BD = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

+) \(AB \bot AD \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {AD}  \Rightarrow \overrightarrow {AB} .\overrightarrow {AD}  = 0\)

+) \(\overrightarrow {AB} .\overrightarrow {AC}  = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = a.a\sqrt 2.\cos 45^\circ  = a^2\)

+) \(\overrightarrow {AC} .\overrightarrow {CB}  = \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {CB} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right) = a\sqrt 2 .a.\cos 135^\circ  =  - {a^2}\)

+) \(AC \bot BD \Rightarrow \overrightarrow {AC}  \bot \overrightarrow {BD}  \Rightarrow \overrightarrow {AC} .\overrightarrow {BD}  = 0\)

Chú ý

\(\overrightarrow {a}  \bot \overrightarrow {b}  \Leftrightarrow \overrightarrow {a} .\overrightarrow {b}  = 0\)

16 tháng 12 2020

a, \(AC=\dfrac{AB}{sin45^o}=\dfrac{a}{\dfrac{\sqrt{2}}{2}}=a\sqrt{2}\)

\(\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos\widehat{BAC}=a.a\sqrt{2}.cos45^o=a^2\)

b, \(\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{BD}+\overrightarrow{BC}\right)=\overrightarrow{AC}\left(\overrightarrow{BD}+\overrightarrow{BC}\right)\)

\(=\overrightarrow{AC}.\overrightarrow{BD}+\overrightarrow{AC}.\overrightarrow{BC}\)

\(=AC.BD.cos90^o+AC.AD.cos45^o\)

\(=a\sqrt{2}.a\sqrt{2}.0+a\sqrt{2}.a.\dfrac{\sqrt{2}}{2}=a^2\)

c, \(\overrightarrow{AB}.\overrightarrow{BD}=AB.BD.cos135^o=-a.a\sqrt{2}.\dfrac{\sqrt{2}}{2}=-a^2\)

d, \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\left(2\overrightarrow{AD}-\overrightarrow{AB}\right)=\overrightarrow{BC}.\left(\overrightarrow{AD}+\overrightarrow{BD}\right)\)

\(=\overrightarrow{BC}.\overrightarrow{AD}+\overrightarrow{BC}.\overrightarrow{BD}\)

\(=AD^2+BC.BD.cos45^o\)

\(=a^2+a.a\sqrt{2}.\dfrac{\sqrt{2}}{2}=2a^2\)

e, \(\left(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right)\left(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\right)\)

\(=\left(\overrightarrow{AC}+\overrightarrow{AC}\right)\left(\overrightarrow{DB}+\overrightarrow{DB}\right)\)

\(=4.\overrightarrow{AC}.\overrightarrow{DB}=4.AC.DB.cos90^o=0\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(|\overrightarrow {AB} | = AB\) và \(|\overrightarrow {AC} |\; = AC.\)

Mà \(AB = 3,\;AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{3^2} + {3^2}}  = 3\sqrt 2  \)

\( \Rightarrow \;|\overrightarrow {AB} |\, = 3;\;\;|\overrightarrow {AC} |\, = 3\sqrt 2 \)

NV
18 tháng 8 2021

A sai

\(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{DA}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}=-\overrightarrow{BD}\) mới đúng

giúp mk 2 bài này với m.n ơi, 2 bài tự luận để mk ôn thi akBài 1/ Cho hình vuông ABCD cạnh a, tâm O. Hãy tính:a/ \(\overrightarrow{AB}.\overrightarrow{BC}\) ; \(\overrightarrow{AB}.\overrightarrow{BD}\) ; ( \(\overrightarrow{AB}+\overrightarrow{AD}\) )(\(\overrightarrow{BD}+\overrightarrow{BC}\)) ;   ...
Đọc tiếp

giúp mk 2 bài này với m.n ơi, 2 bài tự luận để mk ôn thi ak
Bài 1/ Cho hình vuông ABCD cạnh a, tâm O. Hãy tính:
a/ \(\overrightarrow{AB}.\overrightarrow{BC}\) ; \(\overrightarrow{AB}.\overrightarrow{BD}\) ; ( \(\overrightarrow{AB}+\overrightarrow{AD}\) )(\(\overrightarrow{BD}+\overrightarrow{BC}\)) ;

    (\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\))(\(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\)).
b/ \(\overrightarrow{ON}.\overrightarrow{AB}\) ; \(\overrightarrow{NA}.\overrightarrow{AB}\)  với N là điểm cạnh BC.
c/ \(\overrightarrow{MA}.\overrightarrow{MB}\) \(+\overrightarrow{MC}.\overrightarrow{MD}\) với M nằm trên đường nội tiếp hình vuông.
Bài 2/ Cho tam giác ABC, tìm tập hợp những điểm M thỏa mãn điều kiện sau:
a/ \(\overrightarrow{MA}.\overrightarrow{MB}=\overrightarrow{MA}.\overrightarrow{MC}\)
b/ (\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\))(\(\overrightarrow{AC}-\overrightarrow{AB}\) ) = \(AB^2\)
c/ (\(\overrightarrow{MB}+\overrightarrow{MC}\))(\(\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\))=0
M.N cứu mk với, mk sắp thì r cứu mk, THANK YOU VERY MUCH

0
20 tháng 12 2022

a: AB=BC=CD=DA=6a

\(AC=BD=\sqrt{\left(6a\right)^2+\left(6a\right)^2}=6a\sqrt{2}\)

\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=CB=6a\)

\(\left|\overrightarrow{BC}+\overrightarrow{BD}\right|=\sqrt{BC^2+BD^2+2\cdot BC\cdot BD\cdot cos45}\)

\(=\sqrt{36a^2+72a^2+\sqrt{2}\cdot6a\cdot6a\sqrt{2}}\)

\(=6a\sqrt{5}\)

b: \(\overrightarrow{AB}\cdot\overrightarrow{AC}=AB\cdot AC\cdot cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=6a\cdot6a\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}\)

\(=36a^2\)

24 tháng 9 2023

Tham khảo:

\(\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {CB}  \Rightarrow \left| {\overrightarrow {AB}  - \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} } \right| = CB = a.\)

Dựng hình bình hành ABDC tâm O như hình vẽ.

Ta có:

\(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD} \)

\( \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD\)

Vì tứ giác ABDC là hình bình hành, lại có \(AB = AC = BD = CD = a\) nên ABDC là hình thoi.

\( \Rightarrow AD = 2AO = 2.AB.\sin B = 2a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 .\)

Vậy \(\left| {\overrightarrow {AB}  - \overrightarrow {AC} } \right| = a\) và \(\left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = a\sqrt 3 \).