The sum of the values of x satisfy \(\left|x-3\right|<2\) is
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x - 3| < 2
<=> x \(\in\) {2 ; 3 ; 4}
The sum of the values of x is :
2 + 3 + 4 = 9
tui vẫn làm cho cậu mặc dù biết loại như cậu ko tic đúng cho ai hết
Name these numbers to look for is a, b, c, and d
Set \(a\ge b\ge c\ge d\ge0\)
\(a+b+c+d=1111\\ \Rightarrow a=1111-b-c-d\\ a=1111-\left(b+c+d\right)\)
b, c, and d are natural numbers, so \(b,c,d\ge0\Rightarrow b+c+d\ge0\Rightarrow a\le1111\)
The largest possible values of the highest common factor of these four numbers is 1111
4x2+y2+2xy=4x+4y
=>(x2+2xy+y2)+3x2+y2-4x-4y=0
=> (x+y)2+3\(\left(x^2-\dfrac{4}{3}x\right)+\left(y^2-4y\right)=0\)
=> (x+y)2+3\(\left(x^2-2.\dfrac{4}{6}+\dfrac{16}{36}-\dfrac{16}{36}\right)+\left(y^2-4y+4\right)-4=0\)
=> (x+y)2+3\(\left(x-\dfrac{4}{6}\right)^2-\dfrac{4}{3}+\left(y-2\right)^2-4=0\)
=> (x+y)2+3\(\left(x-\dfrac{4}{6}\right)^2+\left(y-2\right)^2=\dfrac{16}{3}\)