Bài 10: Cho hình vẽ, biết A = 1200 , D= 600, C= 300
a) chứng minh AB // DC
b) Tính góc ABC và xBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH và ΔACH có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔACD có AC=AD
nên ΔACD cân tại A
c: Xét ΔDCB có
CA là đường trung tuyến
CA=DB/2
Do đó:ΔDCB vuông tại C
=>DC⊥BC
mà AH⊥BC
nên DC//AH
d: ta có: DC//AH
nên \(\widehat{DCB}=90^0\)
Xét tam giác ABC có góc B > góc C suy ra AC > AB
Xét tam giác vuông ABH và tam giác vuông ACH
chung AH
có AC > AB (CMT)
suy ra HC > HB
c) Vì HC > HB (CMT)
Xét tam giác vuông BHD và tam giác vuông CHD
Có chung DH , BC >HB nên DC >DB
Xét tam giác BDC có DC > DB nên góc DBC > góc DCB
Bài 16:
Xét tam giác ABM và tam giác DCM
có AM=DM (GT)
góc AMB=góc DMC (đối đỉnh)
BM=MC (GT)
suy ra tam giác ABM=tam giác DCM (c.g.c) (1)
b) Từ (1) suy ra góc MAB = góc MDC (hai góc tuơng ứng)
mà góc MAB so le trong góc MDC
suy ra AB // CD
c) Từ (1) suy ra AB = CD
Xét tam giác ACD có AC + CD > AD
mà AD=2AM, AB=CD (CMT)
suy ra AC +AB >2AM
Giải:
a) Ta thấy \(\widehat{A}+\widehat{D}=180^o\) và 2 góc này ở vị trí trong cùng phía nên AB // CD
Vậy AB // CD
b) Ta có: \(\widehat{A}+\widehat{D}+\widehat{C}+\widehat{ABC}=360^o\) ( vì tổng các góc của 1 hình tứ giác bằng \(360^o\) )
\(\Rightarrow120^o+60^o+30^o+\widehat{ABC}=360^o\)
\(\Rightarrow\widehat{ABC}+210^o=360^o\)
\(\Rightarrow\widehat{ABC}=150^o\)
Vì AB // CD nên \(\widehat{C}=\widehat{xBC}=30^o\) ( so le trong )
Vậy \(\widehat{ABC}=150^o,\widehat{xAB}=30^o\)
Lê Nguyên Hạo giúp mình bài này đi ạ ^^