Tìm n thuộc N để biểu thức sau không là số chính phương :
a) n5-n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hahaha bọn mày ơi
vào trang chủ của : Edward Newgate đê
hắn bảo ta trẻ trâu chẳng lẽ hắn lớn trâu chắc :))
Để \(n^2-n+2\) là số chính phương \(\Leftrightarrow n^2-n+2=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4n^2-4n+8=4a^2\)
\(\left(4n^2-4n+1\right)+7=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)
\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2a-1\right)=-7\)
=> 2n - 2a - 1 và 2n + 2a - 1 là ước của - 7
Đến đây liệt kê ước của - 7 rồi xét các TH !!!
ta có n^3-n=n(n^2-1)=(n-1)n(n+1) chia hết cho 3
=> n^3-n+2 chia 3 dư 2
mà số chính phương chia 3 dư 0 hoặc 1 suy ra vô nghiệm
Ta có; \(n^3-n=n^2.n-n=\left(n^2-1hay1^2\right).n=\left(n-1\right)\left(n+1\right)n\)
Vì n-1 ; n ; n+1 là ba số liên tiếp nên trong ba số chắc chắn có một thừa số chia hết cho 3.
Vậy \(\left(n^3-n\right)⋮3\)suy ra n\(^3\)-n + 2 chia cho 3 dư 2.
SCP không chia cho 3 dư 2 nên không có n sao cho số trên là SCP!
Câu 1 đặt cái đó bằng k^2 rồi có (k-a)(k+a)=2004 rồi xét trường hợp
Câu 2 đặt 4a^2+2018=k^2.Dễ thấy k^2 chia hết 2 nên k^2 chia hết cho 4.Mà 4a^2 chia hết 4 và 2018 ko chia hết 4 nên suy ra vô lí
Với n = 1 thì \(n^2-n+2=2\) không là số chính phương.
Với n = 2 thì \(n^2-n+2=4\)là số chính phương
Với n > 2 thì \(n^2-n+2\)không là số chính phương vì :
\((n-1)^2< n^2-(n-2)< n^2\)
sữa chỗ sai
she doesn't go to the cinema withus last Sunday
A B C D
Giữa câu hỏi và caau trả lời có một sự liên quan không hề nhẹ