CM 7^n+4-7^nchia hết cho 30,x thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7n+4-7n=7n(74-1)=7n.2400
Do 2400 chia hết cho 30=>7n.2400 chia hết cho 30
Vậy 7n+4-7n chia hết cho 30 với mọi n thộc N
\(7^{n+4}-7^n=7^n.7^4-7^n=7^n.\left(7^4-1\right)=7^n.2400\)
=\(7^n.30.80\) chia hết cho 30
**** bạn
Nếu n = 3k (k \(\in N\)) thì 2n - 1 = 23k - 1 = 8k - 1 = 7d \(⋮7\)
Nếu n = 3k+1 (k \(\in N\)) thì 2n - 1 = 23k+1 - 1 = 23k.2 - 2 + 1
= 2(23k - 1 ) +1
= BS7 + 1 ko chia hết cho 7
Nếu n = 3k+2 (k \(\in N\)) thì 2n - 1 = 23k+2 - 1 = 23k.4 - 4 + 3
= 4(23k - 1) + 3
= BS7 + 3 ko chia hết cho 7
Do đó: 2n - 1 chia hết cho 7 khi n = 3k (k \(\in N\))
\(7^{n+4}-7^n\)
\(\Rightarrow7^n\cdot7^4-7^n\)
\(\Rightarrow7^n\cdot\left(7^4-1\right)\)
\(\Rightarrow7^n\cdot\left(2401-1\right)\)
\(\Rightarrow7^n\cdot2400\)
\(\Rightarrow7^n\cdot30\cdot80⋮30\left(đpcm\right)\)
\(3^{n+2}+3^n\)
\(\Rightarrow3^n\cdot3^2+3^n\)
\(\Rightarrow3^n\cdot\left(3^2+1\right)\)
\(\Rightarrow3^n\cdot\left(9+1\right)\)
\(\Rightarrow3^n\cdot10⋮10\left(đpcm\right)\)
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Ta có :
\(n^4+7\left(7+2n^2\right)\)
\(=n^4+49+14n^2\)
\(=\left(n^2+7\right)^2\)
Vì n là số nguyên lẻ nên n có dạng 2k + 1 với k là số nguyên
\(\Rightarrow\left(n^2+7\right)^2=\left[\left(2k+1\right)^2+7\right]^2\)
\(=\left[\left(4k^2+4k+1\right)+7\right]^2\)
\(=\left(4k^2+4k+8\right)^2\)
\(=\left[4k\left(k+1\right)+8\right]^2\)
Vì \(\hept{\begin{cases}k\left(k+1\right)⋮2\forall k\in Z\\4⋮4\end{cases}}\) nên \(4k\left(k+1\right)⋮8\forall k\in Z\)
\(\Rightarrow4k\left(k+1\right)+8⋮8\forall k\in Z\)
\(\Rightarrow\left[4k\left(k+1\right)+8\right]^2⋮8^2\forall k\in Z\)
\(\Rightarrow\left[4k\left(k+1\right)+8\right]⋮64\forall k\in Z\)
=> đpcm
n4 + 7( 7 + 2n2 )
= n4 + 14n2 + 49
= ( n2 + 7 )2
Vì n lẻ và n ∈ Z => n = 2k + 1 ( k ∈ Z )
Thế vô ta được :
[ ( 2k + 1 )2 + 7 ]2
= ( 4k2 + 4k + 1 + 7 )2
= ( 4k2 + 4k + 8 )2
= [ 4( k2 + k + 2 ) ]2
= { 4[ k( k + 1 ) + 2 ] }2
Ta có : k( k + 1 ) chia hết cho 2
2 chia hết cho 2
=> k( k + 1 ) + 2 chia hết cho 2
=> 4[ k( k + 1 ) + 2 ] chia hết cho 8
=> { 4[ k( k + 1 ) + 2 ] }2 chia hết cho 64
=> đpcm
24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24...
=(2^3)^54.3^54.(3^3)^24.2^24.2^10
= 2^162.2^24.2^10.3^54.3^72
=2^196.3^126
72^63=(2^3.3^2)^63
=(2^3)^63(.3^2)^63=2^189.3^126
vì 2^196.3^126 chia hết 2^189.3^126
=>24^54.54^24.2^10 chia hết 72^63
\(7^{n+4}-7^n=7^n\left(7^4-1\right)=7^n.2400\)
Do \(2400\) chia hết cho \(30\) \(\Rightarrow7^n.2400\) chia hết cho \(30\)
Vậy \(7^{n+4}-7^n\) chia hết cho \(30\) với \(n\in N\)