\(^{x^3}\) = 2\(p\)+1, trong đó \(x\) là số tự nhiên, \(p\) là số nguyên tố. Tìm \(x\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố nên 2p + 1 là số lẻ. Mà x 3 = 2p + 1 nên x 3 cũng là một số lẻ, suy ra x là số lẻ
Gọi x = 2k + 1 (k Є N). ta có
x 3 = 2p + 1 ó ( 2 k + 1 ) 3 = 2p + 1
⇔ 8 k 3 + 12 k 2 + 6 k + 1 = 2 p + 1 ⇔ 2 p = 8 k 3 + 12 k 2 + 6 k ⇔ p = 4 k 3 + 6 k 2 + 3 k = k ( 4 k 2 + 6 k + 3 )
Mà p là số nguyên tố nên k = 1 => x = 3
Vậy số cần tìm là x = 3
Đáp án cần chọn là: D
Ta đặt số cần tìm là 2p+1=k³ (k∈N)
<=> 2p=k³-1
<=> 2p= (k-1)(k²+k+1)
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p.Mà k²+k+1= k(k+1)+1, k(k+1) chia hết cho 2 nên k(K+1)+1 không chia hết cho 2. Do đó
{k-1=2
{k²+k+1=p
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn)
Vậy chỉ có số duy nhất cần tìm là 27.
Ta đặt số cần tìm là 2p + 1 = k³ ( k ∈ N )
<=> 2p = k³ - 1
<=> 2p = ( k - 1 )( k² + k + 1 )
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p. Mà k² + k + 1 = k( k + 1 ) + 1, k( k + 1 ) chia hết cho 2 => k( k + 1 ) + 1 không chia hết cho 2.
=>{k-1=2
{k²+k+1=p
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn)
Vậy chỉ có số duy nhất cần tìm là 27.
Ta đặt số cần tìm là 2p + 1 = k³ ( k ∈ N )
<=> 2p = k³ - 1
<=> 2p = ( k - 1 )( k² + k + 1 )
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p. Mà k² + k + 1 = k( k + 1 ) + 1, k( k + 1 ) chia hết cho 2 => k( k + 1 ) + 1 không chia hết cho 2.
=>{k-1=2
{k²+k+1=p
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn)
Vậy chỉ có số duy nhất cần tìm là 27.
2,Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
Vì 1 luôn bằng 1. Nên ta thay x =1;p=0. Vào biểu thức ta có:
x=2p+1
=>1=2.0+1=0+1=1
Vậy x=1 khi p=0.
Do 2p là số chẵn nên 2p+1 là số lẻ
=>x3 là số lẻ
=>x là số lẻ
Đặt x=2a+1. Ta có:
(2a+1)3=2p+1
<=>8a3+12a2+6a+1=2p+1
<=>8a3+12a2+6a=2p
<=>2a(4a2+6a+3)=2p
<=>a(4a2+6a+3)=p
Mà p là số nguyên tố nên suy ra a=1.
=>x=2a+1=2.1+1=2+1=3
Vậy x=3