K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

Vì 1 luôn bằng 1. Nên ta thay x =1;p=0. Vào biểu thức ta có:

x=2p+1

=>1=2.0+1=0+1=1

Vậy x=1 khi p=0.

 

30 tháng 9 2016

Do 2p là số chẵn nên 2p+1 là số lẻ

=>x3 là số lẻ

=>x là số lẻ

Đặt x=2a+1. Ta có:

(2a+1)3=2p+1

<=>8a3+12a2+6a+1=2p+1

<=>8a3+12a2+6a=2p

<=>2a(4a2+6a+3)=2p

<=>a(4a2+6a+3)=p

Mà p là số nguyên tố nên suy ra a=1.

=>x=2a+1=2.1+1=2+1=3

Vậy x=3

14 tháng 9 2017

Vì p là số nguyên tố nên 2p + 1 là số lẻ. Mà x 3 = 2p + 1 nên x 3 cũng là một số lẻ, suy ra x là số lẻ

Gọi x = 2k + 1 (k Є N). ta có

x 3 = 2p + 1 ó ( 2 k   +   1 ) 3 = 2p + 1

 

⇔   8 k 3   +   12 k 2   +   6 k   +   1   =   2 p   +   1   ⇔   2 p   =   8 k 3   +   12 k 2   +   6 k     ⇔   p   =   4 k 3   +   6 k 2   +   3 k   =   k ( 4 k 2   +   6 k   +   3 )

Mà p là số nguyên tố nên k = 1 => x = 3

Vậy số cần tìm là x = 3

Đáp án cần chọn là: D

15 tháng 4 2015

Ta đặt số cần tìm là 2p+1=k³ (k∈N)
<=> 2p=k³-1
<=> 2p= (k-1)(k²+k+1)
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p.Mà k²+k+1= k(k+1)+1, k(k+1) chia hết cho 2 nên k(K+1)+1 không chia hết cho 2. Do đó
{k-1=2
{k²+k+1=p
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn)
Vậy chỉ có số duy nhất cần tìm là 27.

1 tháng 6 2020

27 nha bạn

CHÚC BẠN HỌC TỐT

<3

21 tháng 2 2018

Ta đặt số cần tìm là 2p + 1 = k³  ( k ∈ N ) 
<=> 2p = k³ - 1 
<=> 2p = ( k - 1 )( k² + k + 1 ) 
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p.                                                Mà k² + k + 1 = k( k + 1 ) + 1,  k( k + 1 ) chia hết cho 2 => k( k + 1 ) + 1 không chia hết cho 2.  
=>{k-1=2 
    {k²+k+1=p 
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn) 
Vậy chỉ có số duy nhất cần tìm là 27.

26 tháng 2 2019

Ta đặt số cần tìm là 2p + 1 = k³  ( k ∈ N ) 
<=> 2p = k³ - 1 
<=> 2p = ( k - 1 )( k² + k + 1 ) 
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p.                                                Mà k² + k + 1 = k( k + 1 ) + 1,  k( k + 1 ) chia hết cho 2 => k( k + 1 ) + 1 không chia hết cho 2.  
=>{k-1=2 
    {k²+k+1=p 
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn) 
Vậy chỉ có số duy nhất cần tìm là 27.

21 tháng 8 2016

Câu a =13 

Câu b =2 con câu c lam tuong tu 

29 tháng 10 2016

tại sao caí bài này  ko làm đcj

2,Giải: 

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13

20 tháng 8 2024

555

 

18 tháng 7 2015

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

18 tháng 7 2015

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3