K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

3^39 va 11^21

3^39 < 3^42, 3^42=3^6.7=(3^6)^7=729^7

11^21=11^3.7=(11^3)^7=1331^7

vì 729^7 < 1331^7 nên 3^42 < 11^21

=> 3^39 < 11^21

29 tháng 9 2016

Ta có :

\(3^{39}< 3^{42}=\left(3^2\right)^{21}=9^{21}\)

\(\Rightarrow9^{21}< 11^{21}\) \(\Rightarrow3^{99}< 11^{21}\)

20 tháng 2 2021

a) 536 và 1124

Ta có: 536= (53)12=12512  (1)

             1124=(112)12=12112 (2)

Từ (1) và (2) => 536>1124

tương tự.....

 

20 tháng 2 2021

Đáp án là :

câu 20 :625 < 1257

câu 21 :536 > 1124

câu 22 :32n < 23n

câu 23 :523 < 6.522

câu 24 :1124 <19920

câu 25 :399 > 112

a: 199^20=1568239201^5

2003^15=8036054027^5

=>199^20<2003^15

b: 3^99=27^33>27^21=11^21

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

a. 

$199^{20}<200^{20}=(2.100)^{20}=2^{20}.10^{40}=(2^{10})^2.10^{40}< (10^4)^2.10^{40}=10^8.10^{40}=10^{48}$
$2003^{15}> 2000^{15}=(2.10^3)^{15}=2^{15}.10^{45}> 2^{10}.10^{45}> 10^3.10^{45}=10^{48}$

$\Rightarrow 199^{20}< 2003^{15}$
b.

$3^{99}=(3^9)^{11}=19683^{11}$
$11^{21}< 11^{22}=(11^2)^{11}=121^{11}$
Hiển nhiên $19683^{11}> 121^{11}$

$\Rightarrow 3^{99}> 121^{11}> 11^{21}$

26 tháng 7 2023

a, $5^{3} =5\times5\times5=125$

$3^{5} =3\times3\times3=27$

$125>27=>5^{3}>3^{5}$

$3^{2}=3\times3=9$

$2^{3}=2\times2\times2=8$

$9>8=>3^{2}>2^{3}$

$2^{6} =2\times2\times2\times2\times2\times2=64$

$6^{2}=6\times6=36$

$64>36=>2^{6}>6^{2}$

b, $2015\times2017=2015\times(2016+1)=2015\times2016+2015$

$2016^{2}=2016\times2016=2016\times(2015+1)=2016\times2015+2016$

$2015\times2016+2015<2016\times2015+2016=>2015\times2017<2016^{2}$

c, $199^{20}=199^{4\times5}=(199^{4})^{5}= 1568239201^{5}$

$2003^{15}=2003^{3\times5}=(2003^{3})^5 =8036054027^{5}$

$1568239201<8036054027=>199^{20}<2003^{15}$

d, $3^99 =3^{3\times33}=(3^{3})^{33}=27^{33}>27^{21}$

$11^{21}<27^{21}=>3^{99}>11^{21}$

$3^{2n}=9^n$

$2^{3n}=8^n$

$9>8=>3^{2n}>2^{3n}$

 

 

26 tháng 7 2023

So sánh các số sau

a) 53 và 35

53 = 125

35 = 243

=> 53 < 35

32 và 23

32 = 9

23 = 8

=> 32 > 23

26 và 62

26 = 64

62 = 36

=> 26 > 62

b) 2015 x 2017 và 20162

2015 x 2017 

= 2015 x ( 2016 + 1 ) 

= 2015 x 2016 + 2015 

20162

= 2016 x 2016

= 2016 x ( 2015 + 1 )

= 2016 x 2015 + 2016

Vì: 2015 < 2016

=> 2015 x 2017 < 20162

c) 19920 và 200315

19920 < 20020 = ( 23 x 52 )20 = 260 x 540

200315 > 200015 = ( 2 x 103 )15 = ( 24 x 53 )15 = 260 x 545

=> 200315 > 19920

d) 399 và 1121

399 = ( 33 )33 = 2733 > 2721

Vì: 27 > 11

=> 2721 > 1121 

=> 399 > 1121

32n và 23n

32n = ( 32 )n = 9n

23n = ( 23 )n = 8n

Vì 9 > 8

=> 9n > 8n

=> 32n > 23n

Vậy 32n > 23n

 

1 tháng 8 2018

a, Ta có : \(9^{2000}=\left(3^2\right)^{2000}=3^{4000}\)

\(3^{4000}=3^{4000}\)

\(\Rightarrow3^{4000}=9^{2000}\)

Vậy \(3^{4000}=9^{2000}\)

b, Ta có : \(2^{332}< 2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)

\(3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)

\(8^{111}< 9^{111}\)

\(\Rightarrow2^{333} < 3^{222}\)

\(\Rightarrow2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

1 tháng 8 2018

a) \(3^{4000}\)\(9^{2000}\)

ta có:\(9^{2000}=\left(3^2\right)^{2000}=9^{2000}\)

=>\(9^{2000}=9^{2000}\Leftrightarrow3^{4000}=9^{2000}\)

b)\(2^{332}\)\(3^{223}\)

\(2^{332}\) <\(2^{333}\)\(2^{333}=\left(2^3\right)^{111}=8^{111}\)(1)

\(3^{223}\) >\(3^{222}\)\(3^{222}=\left(3^2\right)^{111}=9^{111}\)(2)

từ (1 và 2),suy ra:8111<9111 hay 2332<3223

25 tháng 10 2016

So sánh không quy đồng thì:

 \(\frac{23}{48}< \frac{47}{92}\)

k nha

23/48< 47/92 

chúc bạn học tốt

5 tháng 1 2017

câu a:(-7)*a lớn hơn hoặc bằng (-10)*a

câu b 15*(a-3) lớn hơn hoặc bằng 11*(a-3)

11 tháng 2 2017

11/18.

5/8

5/13.

Chúc bạn may mắn nhé!

11 tháng 2 2017
  1. cau 1 la 11/18
  2. cau 2 la 5 /8
  3. cau cuoi la 5/13