p tích đa thức thành nhân tử :
1) \(a\sqrt{a-1}\)
2) a+\(2\sqrt{a+1}\)
3) \(a\sqrt{a+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{21}+\sqrt{3}+\sqrt{7}+1\)
\(=\sqrt{3}\left(\sqrt{7}+1\right)+\left(\sqrt{7}+1\right)\)
\(=\left(\sqrt{7}+1\right)\left(\sqrt{3}+1\right)\)
\(\sqrt{1-a}+\sqrt{1-a^2}\)
\(=\sqrt{1-a}+\sqrt{\left(1-a\right)\left(1+a\right)}\)
\(=\sqrt{1-a}\left(1+\sqrt{1+a}\right)\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)
\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)
b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)
\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)
a, \(1-a\sqrt{a}\)
\(=\left[1-\left(\sqrt{a}\right)^3\right]\)
\(=\left(1-\sqrt{a}\right)\left[\left(\sqrt{a}\right)^2+1.\sqrt{a}+1^2\right]\)
\(=\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)\)
b, \(x-2\sqrt{x-1}\)
\(=\left(x-1\right)-2\sqrt{x-1}+1\)
\(=\left[\left(\sqrt{x-1}\right)-1\right]^2\)
1: \(a\sqrt{a}-1=\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)\)
2: \(a+2\sqrt{a}+1=\left(\sqrt{a}+1\right)^2\)
3: \(a\sqrt{a}+1=\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\)