:
4: (3,5 điểm). Cho cân tại B có đường cao BH .
a) Chứng minh H là trung điểm của AC.
b) Từ H kẻ HE AB (E AB); HF BC (FBC). Chứng minh rằng là tam giác cân.
c) Trên tia đối tia HF, lấy điểm M sao cho H là trung điểm MF. Chứng minh AC là đường trung trực của đoạn thẳng ME.
d) Gọi P là giao điểm của đoạn thẳng ME và AC ; K là giao điểm của đoạn thẳng FP và HE. Chứng minh rằng các đường thẳng BH; EF; MK đồng quy
a) Xét ΔBAH vuông tại H và ΔBCH vuông tại H có
BA=BC(ΔBAC cân tại B)
BH chung
Do đó: ΔBAH=ΔBCH(cạnh huyền-cạnh góc vuông)
Suy ra: HA=HC(hai cạnh tương ứng)
mà H nằm giữa A và C
nên H là trung điểm của AC
b) Xét ΔBEH vuông tại E và ΔBFH vuông tại F có
BH chung
\(\widehat{EBH}=\widehat{FBH}\)(ΔABH=ΔCBH)
Do đó: ΔBEH=ΔBFH(cạnh huyền-góc nhọn)
Suy ra: BE=BF(hai cạnh tương ứng)
hay ΔBEF cân tại B