B = 1/7 + 1/72 + 1/73 + ………. + 1/7100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F = 7 + 72 + 73 + 74 + ..... + 7100
F= 7+(1+7)+73+(1+7)+...+799+(1+7)
F = 7x8+73x8+...+799x8
F= 8x(7+73+...+799)
mà 8 chia hết 8 => 8(7+73+...+799) chia hết 8
Vậy F chia hết cho 8
\(A=7+7+7^2+...+7^{100}\)
\(7A=7^2+7^2+7^3+...+7^{101}\)
\(A=14+7^2+7^{101}\)
M = 7 + 72 + 73 + 74 + ..... + 7100
M = 7+(1+7)+73+(1+7)+...+799+(1+7)
M = 7x8+73x8+...+799x8
M = 8x(7+73+...+799)
mà 8 chia hết 8 => 8(7+73+...+799) chia hết 8
Vậy M chia hết cho 8
umm, bn nhân A với 1/7 và nhân B với 1/9, sau đó tính ra và so sánh thôi
a,19/7=5/7 +2
2>7/9 => 19/7>7/9
b, 72/73=1- 1/73
98/99=1- 1/99
1/73>1/99
c,19/18=1+ 1/18
2005/2004=1+ 1/2004
1/18>1/2004
d, 72/73=(58+14)/73=58/73 + 14/73
58/73>58/99
=> 72/73>58/99
c) \(\left|x\right|=3,5\Rightarrow\left[{}\begin{matrix}x=3,5\\x=-3,5\end{matrix}\right.\)
d) \(\left|x\right|=-2,7\Rightarrow x\in\varnothing\)
l) \(\left|x+\dfrac{3}{4}\right|-5=-2\Rightarrow\left|x+\dfrac{3}{4}\right|=3\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=3\\x+\dfrac{3}{4}=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3-\dfrac{3}{4}\\x=-3-\dfrac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=\dfrac{15}{4}\end{matrix}\right.\)
Đính chính câu l \(x=-\dfrac{15}{4}\) không phải \(x=\dfrac{15}{4}\)
\(B=72\times74=\left(73-1\right)\left(73+1\right)=73^2+73-73-1=73^2-1< 73^2=73\times73=A\)
\(B=\left(73-1\right)\left(73+1\right)=73^2-1< 73^2=A\)
a)\(...A=\dfrac{2^{50+1}-1}{2-1}=2^{51}-1\)
b) \(...\Rightarrow B=\dfrac{3^{80+1}-1}{3-1}=\dfrac{3^{81}-1}{2}\)
c) \(...\Rightarrow C+1=1+4+4^2+4^3+...+4^{49}\)
\(\Rightarrow C+1=\dfrac{4^{49+1}-1}{4-1}=\dfrac{4^{50}-1}{3}\)
\(\Rightarrow C=\dfrac{4^{50}-1}{3}-1=\dfrac{4^{50}-4}{3}=\dfrac{4\left(4^{49}-1\right)}{3}\)
Tương tự câu d,e,f bạn tự làm nhé
B = 74 - 73 + 72 - 71 +.................+2 - 1
B = 1 + 1 + ... + 1
mà có 37 số 1
B = 1 x 37
=> B = 37
\(B=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(7B=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(7B-B=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)
\(6B=1-\frac{1}{7^{100}}\)
\(B=\frac{1-\frac{1}{7^{100}}}{6}\)
\(B=\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{100}}\)
\(\Rightarrow7B=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(\Rightarrow7B-B=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6B=1-\frac{1}{7^{99}}\)
\(\Rightarrow B=\left(1-\frac{1}{7^{99}}\right):6\)