Tìm n thuộc N để
B= \(\frac{10n-3}{4n-10}\) Đạt giá trị lớn nhất
Giúp tớ đi thấy ngại ngại sao ó hỏi thăm ý kiến thử coi tui làm đúng ko
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để B đạt GTLN
=>4n-10 bé nhất
vì 4n-10 là mẫu của B nên 4n-10\(\ne0\)
=>4n-10=2
<=>4n=2+10=12
=>n=12:4=3
vậy Bmax=\(\frac{10-3}{4.3-10}=\frac{7}{12.10}=\frac{7}{2}\)khi n=3
Tìm số tự nhiên n để phân số B=\(\frac{10n-3}{4n-10}\)đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó.
\(2B=\frac{10n-3}{2n-5}=\frac{10n-25+22}{2n-5}=\frac{5\left(2n-5\right)}{2n-5}+\frac{22}{2n-5}\)
=> \(2B=5+\frac{22}{2n-5}\)
Để B đạt giá trị lớn nhất thì 2B phải đạt GTLN
=> \(\frac{22}{2n-5}\)phải đạt GTLN => (2n-5) đạt GTNN => n=0 => 2n-5=-5
GTLN của 2B là: \(2B_{max}=5-\frac{22}{5}=\frac{3}{5}\)
=> \(B_{max}=\frac{3}{10}\) đạt được khi n=0
Để B đạt GTLN thì 2B đạt GTLN
Ta có:
2B=2.10n−34n−10=20n−64n−10=20n−50+444n−10=5.(4n−10)+444n−102B=2.10n−34n−10=20n−64n−10=20n−50+444n−10=5.(4n−10)+444n−10
2B=5.(4n−10)4n−10+444n−10=5+444n−102B=5.(4n−10)4n−10+444n−10=5+444n−10
Để 2B đạt GTLN thì 444n−10444n−10 đạt GTLN
=> 4n - 10 đạt GTNN
+ Với x < 3 thì 4n - 10 < 0, khi đó 444n−10<0444n−10<0
+ Với x≥3x≥3 thì 4n - 10 > 0, khi đó 444n−10444n−10 > 0
Mà n nhỏ nhất => n = 3
Như vậy, ta tìm được n = 3 thỏa mãn 2B đạt GTLN
Thay n = 3 vào B ta có:
B=10.3−34.3−10=30−312−10=272B=10.3−34.3−10=30−312−10=272
Vậy với n = 3 thì B đạt GTNN = 272
Ta có:
B
=
10
n
−
3
4
n
−
10
=
2
,
5
(
4
n
−
10
)
+
22
4
n
−
10
=
2
,
5
(
4
n
−
10
)
4
n
−
10
+
22
4
n
−
10
=
2
,
5
+
22
4
n
−
10
Vì n là số tự nhiên nên
B
=
2
,
5
+
22
4
n
−
10
đạt giá trị lớn nhất khi
22
4
n
−
10
đạt đạt giá trị lớn nhất.
Mà
22
4
n
−
10
đạt đạt giá trị lớn nhất khi 4n – 10 là số nguyên dương nhỏ nhất.
+) Nếu 4n – 10 = 1 thì 4n = 11 hay
n
=
11
4
(loại)
+) Nếu 4n – 10 = 2 thì 4n = 12 hay n = 3 (chọn)
Khi đó
B
=
2
,
5
+
22
2
=
13
,
5
Vậy B đạt giá trị lớn nhất là 13,5 khi n = 3
B=10n-3/4n-10=5/2.(4n-10)+22(tử)/4n-10(mẫu)=5/2+ 22/4n-10
Để B có giá trị lớn nhất thì 22/4n-10 là số dương lớn nhất=> 4n-10 là số dương nhỏ nhất mà n là số tự nhiên
=>4n - 10 = 2 => n=3
để B đạt GTLN=>4n-10 đạt GTNN
ta thấy
\(4n\ge0\)
=>\(4n-10\ge0-10\)
mà 4n-10 đạt GTNN=>4n-10=-10
4n=0
=>n=0
vậy Bmax=\(\frac{3}{10}\) khi n=0
Lời giải:
$B=\frac{10n-3}{4n-10}$
$2B=\frac{20n-6}{4n-10}=\frac{5(4n-10)+44}{4n-10}=5+\frac{44}{4n-10}$
$B=\frac{5}{2}+\frac{22}{4n-10}=\frac{5}{2}+\frac{11}{2n-5}$
Để $B$ min thì $\frac{11}{2n-5}$ min
Điều này xảy ra khi $2n-5$ là số âm lớn nhất.
Với $n\in\mathbb{N}$, $2n-5$ nhận giá trị âm lớn nhất bằng -1.
$\Leftrightarrow n=4$
Khi đó, $B_{\min}=\frac{5}{2}+\frac{11}{-1}=\frac{-17}{2}$
\(B=\frac{10n-3}{4n-10}=\frac{5.\left(2n-5\right)+22}{2.\left(2n-5\right)}=\frac{5}{2}+\frac{22}{2.\left(2n-5\right)}=\frac{5}{2}+\frac{11}{2n-5}\)
B đạt \(GTLN\) khi \(\frac{11}{2n-5}\) đạt GTLN .
Vì \(11>0\) và không đổi nên \(\frac{11}{2n-5}\) đạt GTLN khi \(2n-5>0\) và đạt \(GTNN\)
\(\Leftrightarrow2n-5=1\)
\(\Leftrightarrow n=3\)
Vậy \(Max_B\) là \(11+\frac{5}{2}=13,5\) khi \(n=3\)
Bạn có thể giải rồi mình xem đúng hay không nhé. Chúc bạn học tốt.