Bài 1 viết các biểu thức sau dưới dạng bình phương 1 tổng hay 1 hiệu
a, 3+4\(\sqrt{3}\)
b, 5+2\(\sqrt{6}\)
c,13+\(\sqrt{48}\)
d,4+2\(\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(27-10\sqrt{2}=5^2-2.5\sqrt{2}+2=\left(5-\sqrt{2}\right)^2\)
c)\(18-8\sqrt{2}=4^2-2.4\sqrt{2}+2=\left(4-\sqrt{2}\right)^2\)
d)\(4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
e)\(6\sqrt{5}+14=9+2.3\sqrt{5}+5=\left(3+\sqrt{5}\right)^2\)
f)\(20\sqrt{5}+45=5^2+2.5.2\sqrt{5}+20=\left(5+2\sqrt{5}\right)^2\)
g)\(7-2\sqrt{6}=6-2\sqrt{6}+1=\left(\sqrt{6}-1\right)^2\)
\(13-4\sqrt{3}=\left(2\sqrt{3}\right)^2-2.2\sqrt{2}.1+1^2=\left(2\sqrt{3}-1\right)^2\)
a) \(\left(\sqrt{5}+\sqrt{3}\right)\sqrt{8-2\sqrt{15}}=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)
câu này \(\sqrt{15}\)đúng hơn \(\sqrt{5}\)
b) \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}=\frac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)c) \(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}=\sqrt{3}-\sqrt{2}-\sqrt{3}-\sqrt{2}=-2\sqrt{2}\)
1) \(15-\sqrt{216}=15-\sqrt{4}.\sqrt{54}\)=\(9-2.\sqrt{9}.\sqrt{6}+6\)=\(\left(\sqrt{9}-\sqrt{6}\right)^2=\left(3-\sqrt{6}\right)^2\)
2)\(20-\sqrt{76}=20-\sqrt{4}.\sqrt{19}=19-2\sqrt{19}.1+1=\left(\sqrt{19}-1\right)^2\)
3)\(24-12\sqrt{3}=6\left(4-2\sqrt{3}\right)=6\left(3-2.\sqrt{3}.1+1\right)=6\left(\sqrt{3}-1\right)^2\)
4)\(7-\sqrt{13}=\frac{14-2\sqrt{13}}{2}=\frac{13-2\sqrt{13}.1+1}{2}=\frac{\left(\sqrt{13}-1\right)^2}{2}\)
5)\(16-\sqrt{31}=\frac{32-2\sqrt{31}}{2}=\frac{31-2\sqrt{31}.1+1}{2}=\frac{\left(\sqrt{31}-1\right)^2}{2}\)
b) \(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{4+5}=3\)
a.
ĐKXĐ: $x\geq 0; y\geq 1$
PT $\Leftrightarrow (x-4\sqrt{x}+4)+(y-1-6\sqrt{y-1}+9)=0$
$\Leftrightarrow (\sqrt{x}-2)^2+(\sqrt{y-1}-3)^2=0$
Vì $(\sqrt{x}-2)^2; (\sqrt{y-1}-3)^2\geq 0$ với mọi $x\geq 0; y\geq 1$ nên để tổng của chúng bằng $0$ thì:
$\sqrt{x}-2=\sqrt{y-1}-3=0$
$\Leftrightarrow x=4; y=10$
b.
ĐKXĐ: $x\geq -1; y\geq -2; z\geq -3$
PT $\Leftrightarrow x+y+z+35-4\sqrt{x+1}-6\sqrt{y+2}-8\sqrt{z+3}=0$
$\Leftrightarrow [(x+1)-4\sqrt{x+1}+4]+[(y+2)-6\sqrt{y+2}+9]+[(z+3)-8\sqrt{z+3}+16]=0$
$\Leftrightarrow (\sqrt{x+1}-2)^2+(\sqrt{y+2}-3)^2+(\sqrt{z+3}-4)^2=0$
$\Rightarrow \sqrt{x+1}-2=\sqrt{y+2}-3=\sqrt{z+3}-4=0$
$\Rightarrow x=3; y=7; z=13$
1 ) \(9+4\sqrt{2}=9+2\sqrt{8}=[\left(\sqrt{8}\right)^2+2.\sqrt{8}.1+1]=\left(\sqrt{8}+1\right)^2\)
2 ) \(31+12\sqrt{3}=31+2\sqrt{108}=\left[\left(\sqrt{27}\right)^2+2.\sqrt{27}.2+2^2\right]=\left(\sqrt{27}+4\right)^2\)
\(a,\sqrt{2^3}=2^{\dfrac{3}{2}}\\ b,\sqrt[5]{\dfrac{1}{27}}=\sqrt[5]{3^{-3}}=3^{-\dfrac{3}{5}}\\ c,\left(\sqrt[5]{a}\right)^4=\sqrt[5]{a^4}=a^{\dfrac{4}{5}}\)
b: \(5+2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^2\)
c: \(13+\sqrt{48}=13+4\sqrt{3}=\left(2\sqrt{3}+1\right)^2\)
d: \(4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)