Tìm cặp số x,y thỏa mãn điều kiện sau:
x(y+1) - y=1
Bài 2: phân tích thánh nhân tử:
a) m^4 - n^4
b) 8x^3 + 125y^3
c) a^6 - 1
d) a^8 -b^8
giải giúp mk vs,mk cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(2x^3+x^2-13x+6\)
\(=2x^3-4x^2+5x^2-10x-3x+6\)
\(=\left(x-2\right)\left(2x^2+5x-3\right)\)
\(=\left(x-2\right)\left(2x^2+6x-x-3\right)\)
\(=\left(x-2\right)\left(x+3\right)\left(2x-1\right)\)
b: \(2x^2+y^2-6x+2xy-2y+5=0\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-4x+4-2x-2y+1=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-2\right)^2-2\left(x+y\right)+1=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(x+y-1\right)^2=0\)
=>x-2=0 và x+y-1=0
=>x=2 và y=-1
a)\(\frac{1}{64}x^6-125y^3=\left(\frac{1}{4}x^2\right)^3-\left(5y\right)^3\)\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{4}x^2y+25y^2\right)\)
b)\(x^6+1=\left(x^2\right)^3+1^3=\left(x^2+1\right)\left(x^4+x^2+1\right)\)
c)\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
d)\(x^9+1=\left(x^3\right)^3+1=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^6-x^3+1\right)\)
\(=x^3\left(x+1\right)\left(x^2-x+1\right)\left(x^2-x+1\right)\)
a) m4-n4=(m2-n2)(m2+n2)
b) 8x3+125y3=(2x+5y)(4x2-10xy+25y2)
c) a6-1=(a3-1)(a3+1)
d) a8-b8=(a4-b4)(a4+b4)
Mk chỉ bk giải câu 2 thui nhe^_^
ừ,mk cảm ơn