Xác định hằng số A để x^3+ax^2-4 chia h cho x^2+4x+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thương của phép chia là f(x)
Ta có : \(x^3+ax^2-4=f\left(x\right)\cdot\left(x^2+4x+4\right)\)
\(\Leftrightarrow x^3+ax^2-4=f\left(x\right)\cdot\left(x+2\right)^2\)
Với \(x=-2\), ta có :
\(\left(-2\right)^3+a.\left(-2\right)^2-4=f\left(x\right).0\)
\(\Leftrightarrow-8+4a-4=0\)
\(\Leftrightarrow4a=12\)
\(\Leftrightarrow a=3\)
Vậy a = 3
a, Gọi thương phép chia là Q(x) khi đó, ta có:
2x2 + ax +1 = (x-3).Q(x) +4
Với x=3 ta có: 2.32 + 3a +1= 0.Q(x) +4
19+3a = 4
=> 3a= -15
=> a= -5
Giai tương tự với các câu còn lại hoặc có thể dùng phương pháp đồng nhất hệ số
=x^4+4x^2+4-4x^2
=(x^2+2)^2-4x^2
=(x^2+2-2x)(x^2+2+2x)
Để x^4+4 chia hết cho x^2+ax+b thì
(x^2-2x+2)(x^2+2x+2) chia hết cho x^2+ax+b
a,Để \(4x^2-6x+a=\left(x-3\right)\left(4x+6\right)+\left(a+18\right)⋮\left(x-3\right)\)
\(\Rightarrow x+18=0\Rightarrow x=-18\)
Các câu dưới tương tự bn tự làm nha!
x3 + ax2 - a = (x3 + 4x2 + ax) + ax2 - 4x2 - ax - a = x(x2 + 4x + a) + (a - 4)x2 - ax - a
= x(x2 + 4x + a) + (a - 4)x2 + 4(a - 4)x + a.(a - 4) - 4(a - 4)x - ax - a.(a - 4) - a
= x(x2 + 4x + a) + (a - 4). (x2 + 4x + a) - (5a -16)x - a2 + 3a
= (x + a - 4)(x2 + 4x + a) - (5a -16)x - a2 + 3a
=> x3 + ax2 - a chia cho x2 + 4x + a dư - (5a -16)x - a2 + 3a
Để phép chia là phép chia hết thì - (5a -16)x - a2 + 3a = 0 với mọi x <=> 5a - 16 = 0 và -a2 + 3a = 0
<=> a = 16/5 và a = 0 hoặc a = 3 : Điều này không xảy ra
Vậy không tồn tại a để....
Lời giải:
$f(x)=ax^3+4x^2+4$
$g(x)=x^3-4bx^2-4x-(c+3)$
Để $f(x)=g(x), \forall x$ thì:
\(\left\{\begin{matrix}\\
a=1\\
4=-4b\\
0=-4\\
4=-(c+3)\end{matrix}\right. (\text{vô lý})\)
Vậy không tồn tại $a,b,c$ thỏa mãn đề.