Tìm số tự nhiên n, biết :
a)
b)
c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c bạn tham khảo tại đây:
Câu hỏi của Edogawa Conan - Toán lớp 6 - Học toán với OnlineMath
Ta có : 3x + 2 chia hết cho n - 1
=> 3x - 3 + 5 chia hết cho n - 1
=> 3(n - 1) + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5) = {1;5}
=> n = {2;6}
a) 3n+2 \(⋮\) n-1 <=> 3(n-1)+5 \(⋮\) n-1
=> 5 \(⋮\) n-1 (vì 3(n-1) \(⋮\) n-1)
=> n-1 ∈ Ư(5) = {1; 5}
n-1 = 1 => n = 2
n-1 = 5 => n = 6
Vậy n ∈ {2; 6}
b)
Vì \(ƯCLN\left(a,b\right)=3\Rightarrow\hept{\begin{cases}a=3.m\\b=3.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 3.m, b = 3.n vào a.b = 891, ta có:
3.m.3.n = 891
=> (3.3).(m.n) = 891
=> 9.(m.n) = 891
=> m.n = 891 : 9
=> m.n = 99
Vì m và n nguyên tố cùng nhau
=> Ta có bảng giá trị:
m | 1 | 99 | 9 | 11 |
n | 99 | 1 | 11 | 9 |
a | 3 | 297 | 27 | 33 |
b | 297 | 3 | 33 | 27 |
Vậy các cặp (a,b) cần tìm là:
(3; 297); (297; 3); (27; 33); (33; 27).
Ta có: 1+2+3+...+bc=abc (0 < a ≤9 và 0≤b,c ≤9)
<=> ab ( \(ab\) +1)2 = abc
<=> bc ( bc+1)=2. abc
<=> bc.bc+bc=2(100a+bc)
<=> bc.bc+bc=200a+2bc
<=> bc(bc-1)=200a
Nhận xét: Vế phải là 200a => Số tận cùng là 0.
Vậy vế trái bc.(bc-1) cũng phải có tận cùng là 0 và phải chia hết cho 100.
Có các trường hợp: c = 0, c = 1, c = 5 và c = 6.
Xét từng trường hợp, có: +/ TH1: Với c=0 => b0(b0-1)=200a
<=> 10b(10b-1)=200a <=> b(10b-1)=20a. Không có giá trị của b thỏa mãn để: b(10b-1)⋮10 => Loại
+Trường hợp 2: Với c=1 => b1(b1-1)=200a
<=> (10b+1).10b=200a <=> b(10b+1)=20a. Không có giá trị của b thỏa mãn để: b(10b+1)⋮10 => Loại
+/ Trường hợp 3: Với c=5 => b5(b5-1)=200a <=> b4.b5=200a
Nhận thấy: b4 và b5 là 2 số tự nhiên liên tiếp. Để tích của chúng có 2 chữ số tận cùng là 0.
Ta chọn được duy nhất b=2 (Do 24.25=600) => 24.25=200a => a=3 (nhận)
+/ Trường hợp4: Với c=6 => b6.b5=200a
Nhận thấy: b5 và b6 là 2 số tự nhiên liên tiếp. Để tích của chúng có 2 chữ số tận cùng là 0.
Ta chọn được duy nhất b=7 (Do 75.76=5700) <=> 75.76=200a => a=28,5 (Loại)
Vậy cặp số duy nhất thỏa mãn là: a=3, b=2, c=5 Vậy \(\overline{abc}\) = 325.
TTTTTTTTTTTTTTHHHHHHHHHHHHHAAAAAAAAAAAAAANNNNNNNNKKKKKKKKKKKKKKSSSSSSSSSSSSSSS HỒ ĐỨC VIỆT
a ) 2n = 16
2.2.2.2 = 16 nên n = 4
Vậy : 24 = 16
b ) 4n = 64
4.4.4 = 64 nên n = 3
Vậy : 43 = 64
c ) 15n = 225
15.15 = 225 nên n = 2
Vậy : 152 = 225
Câu 17
Để n - 1 là ước của 3n + 6 thì (3n + 6) ⋮ (n - 1)
Ta có:
3n + 6 = 3n - 3 + 9 = 3(n - 1) + 9
Để (3n + 6) ⋮ (n - 1) thì 9 ⋮ (n - 1)
⇒ n - 1 ∈ Ư(9) = {-9; -3; -1; 1; 3; 9}
⇒ n ∈ {-8; -2; 0; 2; 4; 10}
Mà n là số tự nhiên
⇒ n ∈ {0; 2; 4; 10}
Câu 22
A = 3 + 3² + 3³ + ... + 3²⁰²⁵
⇒ 3A = 3² + 3³ + 3⁴ + ... + 3²⁰²⁶
⇒ 2A = 3A - A
= (3² + 3³ + 3⁴ + ... + 3²⁰²⁶) - (3 + 3² + 3³ + ... + 3²⁰²⁵)
= 3²⁰²⁶ - 3
⇒ 2A + 3 = 3²⁰²⁶ - 3 + 3
⇒ 2A + 3 = 3²⁰²⁶
Mà 2A + 3 = 3ⁿ
⇒ 3ⁿ = 3²⁰²⁶
⇒ n = 2026
\(\frac{16}{2^n}=2\)
=> 2n=16:2
=> 2n=8
=> 2n=23
=> n=3
b;
\(\frac{\left(-3\right)^n}{81}=-27\)
\(\Rightarrow\left(-3\right)^n=-27.81\)
=> (-3)n=-2187
=> (-3)n=(-3)7
=> n=7
c ; \(8^n:2^n=4\)
\(\Rightarrow\left(8:2\right)^n=4\)
\(\Rightarrow\left(4\right)^n=4\)
Mà : 4=41
=> 4n=41
=> n=1
\(\frac{16}{2^n}=2\)
\(16:2^n=2\)
\(2^4:2^n=2\)
\(2^n=2^4:2\)
\(2^n=2^3\)
\(=>n=3\)
\(\frac{\left(-3\right)^n}{81}=-27\)
\(\left(-3\right)^n:81=-27\)
\(\left(-3\right)^n=-27\cdot81\)
\(\left(-3\right)^n=-2187\)
\(\left(-3\right)^n=\left(-3\right)^7\)
\(=>n=7\)