bài 1: tính nhanh
a, \(\frac{97^3+83^3}{180}-97.83\)
các bạn ơi giúp mình. mình k làm đc bài này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\frac{97^3+83^3}{180}-97\cdot83=\frac{\left(97+83\right)\left(97^2-97\cdot83+83^2\right)}{180}-97\cdot83\)
\(=97^2-97\cdot83+83^2-97\cdot83=97^2-2\cdot97\cdot83+83^2\)
\(=\left(97-83\right)^2=14^2=196\)
Bài 2:
\(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\Leftrightarrow x=5\)
\(C=\frac{97^3+83^3}{180}-97.83\)
\(C=\frac{\left(97+83\right)\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(C=\frac{180\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(C=97^2-97.83+83^2-97.83\)
\(C=97^2-2.97.83+83^2\)
\(C=\left(97-83\right)^2=14^2=196\)
để B thuộc Z
=> căn x - 15 chia hết 3
căn x - 15 thuộc B(3)
=> căn x - 15 = 3K (K thuộc Z)
căn x = 3K + 15
x = (3K + 15)2
\(\frac{\sqrt{x}-15}{3}\)=\(\frac{\sqrt{x}}{3}\)-\(\frac{15}{3}\)=\(\frac{\sqrt{x}}{3}\)- 5
vì B thuộc Z => \(\frac{\sqrt{x}}{3}\)- 5 thuộc Z
=> \(\frac{\sqrt{x}}{3}\)thuộc Z
=>\(\sqrt{x}\)chia hết cho 3
=> \(\sqrt{x}\)= 9
\(R=\frac{43^2-11^2}{\left(36,5\right)^2-\left(27,5\right)^2}\)
\(=\frac{\left(43-11\right)\left(43+11\right)}{\left(36,5-27,5\right)\left(36,5+27,5\right)}\)
\(=\frac{32.54}{9.64}\)
\(=\frac{6}{2}=3\)
Bạn viết sai đề bài rồi
\(S=\frac{97^3+83^3}{180}-97.83\)
\(=\frac{\left(97+83\right)\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(=97^2-97.83+83-97.83\)
\(=\left(97-83\right)^2=14^2=196\)
Trả lời:
\(R=\frac{43^2-11^2}{36,5^2-27,5^2}\)
\(R=\frac{\left(43-11\right).\left(43+11\right)}{\left(36,5-27,5\right).\left(36,5+27,5\right)}\)
\(R=\frac{32.54}{9.64}\)
\(R=3\)
Đề bài sai bạn nhé
\(S=\frac{97^3+83^3}{180}-97.83\)
\(S=\frac{\left(97+83\right).\left(97^2-97.23+83^2\right)}{180}-97.83\)
\(S=97^2-97.83+83^2-97.83\)
\(S=97^2-2.97.83+83^2\)
\(S=\left(97-83\right)^2\)
\(S=14^2\)
\(S=196\)
Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{203}{3^{100}}< 3\)
\(A< \frac{3}{4}\left(đpcm\right)\)
CMR: \(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{100}{4^{100}}< \frac{4}{9}\)
Dạng tổng quát: CMR: \(\frac{1}{k}+\frac{2}{k^2}+\frac{3}{k^3}+\frac{4}{k^4}+...+\frac{n}{k^n}< \frac{k}{\left(k-1\right)^2}\)(k;n \(\in\) N*; k > 1)
a)
\(\frac{1}{x^2+x+1}dx=\frac{1}{\left(x-\frac{1}{4}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}dx\)
Đặt
\(\left(x-\frac{1}{4}\right)=\frac{\sqrt{3}}{2}tant\) => dx=\(\frac{\sqrt{3}}{2}\left(1+tan^2t\right)dt\) =>\(\frac{1}{x^2+x+1}dx=\frac{1}{\frac{3}{4}\left(1+tan^2t\right)+\frac{3}{4}}\left(1+tan^2t\right)dt=\frac{3}{4}dt=\frac{3}{4}t+C\)
Với \(\left(x-\frac{1}{4}\right)=\frac{\sqrt{3}}{2}tant=>t=\left(\frac{2\sqrt{3}}{4x-1}\right)\)
Câu b nhá :
\(\frac{1}{x^2+2x+2}dx=\frac{1}{\left(x+1\right)^2+\left(\sqrt{2^2}\right)}dx\)
Đặt
\(x+1=\sqrt{2}tant=>dx=\sqrt{2}\left(1+tan^2t\right)dt\)
=> \(\frac{1}{x^2+2x+3}dx=\frac{1}{2\left(tan^2t+1\right)}.\left(1+tan^2t\right)dt=\frac{1}{2}dt=\frac{1}{2}t+C\)
Với
\(x+1=\sqrt{2}tant=>tant=\frac{x+1}{\sqrt{2}}<=>t=arctan\left(\frac{x+1}{\sqrt{2}}\right)\)
\(a,\frac{97^3+83^3}{180}-97.83\)
\(=\frac{\left(97+83\right)\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(=\frac{180\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(=97^2-97.83+83^2-97.83\)
\(=97^2+83^2-2.97.83\)
\(=\left(97-83\right)^2\)
\(=14^2=196\)