K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2016

\(P=\frac{12.n-6}{4.n+1}=\frac{12.n+3-9}{4.n+1}=\frac{3.\left(4.n+1\right)-9}{4.n+1}=\frac{3.\left(4.n+1\right)}{4.n+1}-\frac{9}{4.n+1}=3-\frac{9}{4.n+1}\)

Để P là số nguyên thì \(\frac{9}{4.n+1}\) là số nguyên

=> 9 chia hết cho 4.n + 1

=> \(4.n+1\inƯ\left(9\right)\)

Mà 4.n + 1 chia 4 dư 1 => \(4.n+1\in\left\{-3;1;9\right\}\)

=> \(4.n\in\left\{-4;0;8\right\}\)

=> \(n\in\left\{-1;0;2\right\}\)

Vậy \(n\in\left\{-1;0;2\right\}\) thỏa mãn đề bài

15 tháng 9 2016

P thuộc Z

<=> 12n - 6 chia hết cho 4n + 1

<=> 3(4n + 1) - 9 chia hết cho 4n + 1

<=> 9 chia hết cho 4n + 1

<=> 4n + 1 thuộc Ư(9) = {-9 ; -3 ; -1 ; 1 ; 3 ; 9}

<=> 4n thuộc {-10 ; -4 ; -2 ; 0 ; 2 ; 8}

<=> n thuộc {-5/2 ; -1 ; -1/2 ; 0 ; 1/2 ; 2}

12 tháng 1 2018

b) Để \(\frac{n+4}{n+1}\in Z\)

\(\Rightarrow n+4⋮n+1\)

\(\Rightarrow n+1+3⋮n+1\)

Mà \(n+1⋮n+1\)

\(\Rightarrow3⋮n+1\)

Lại có : \(n\in Z\Rightarrow n+1\in Z\)

\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{0;-2;2;-4\right\}^{\left(1\right)}\)

Để \(\frac{2}{n-1}\in Z\)

\(\Rightarrow2⋮n-1\)

Lại có: \(n\in Z\Rightarrow n-1\in Z\)

\(\Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Rightarrow n\in\left\{2;0;3;-1\right\}^{\left(2\right)}\)

Từ (1) và (2) suy ra:

Để \(\frac{n+4}{n+1}\)và \(\frac{2}{n-1}\)đồng thời có giá trị nguyên thì n = 0 ; 2 ( thỏa mãn n là số nguyên )

12 tháng 1 2018

a) Để \(\frac{n+2}{9}\in Z\)

\(\Rightarrow n+2⋮9\)

\(\Rightarrow n+2⋮3^{\left(1\right)}\)

Để \(\frac{n+3}{6}\in Z\)

\(\Rightarrow n+3⋮6\)

\(\Rightarrow n+3⋮3\)

\(\Rightarrow n⋮3^{\left(2\right)}\)

Từ (1) và (2) suy ra :

Ko tồn tại giá trị nào của n thỏa mãn đề bài

11 tháng 2 2020

a) Để Q là phân số 

\(\Leftrightarrow n-1\ne0\Leftrightarrow n\Leftrightarrow1\)

Vậy với x khác 1 thì biểu thức đã cho là phân số.

b) Thay n tính ( So sánh với ĐKXĐ )

c) n là số nguyên thì n - 1 thuộc Ư {10}

23 tháng 2 2021
a) 1 phan 4 b) 5
14 tháng 3 2021

rất tiếc bạn đã làm sai

 

5 tháng 5 2019

Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)

Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)

\(n-1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(2\)\(0\)\(6\)\(-4\)
1 tháng 4 2020

a) Để C là phân số thì \(n+6\ne0\)

\(\Rightarrow n\ne-6\)

Vậy \(n\ne-6\)

b) Để C là số nguyên thì \(5n-1⋮n+6\)

\(\Rightarrow5n-30+31⋮n+6\)

\(\Rightarrow5\left(n-6\right)+31⋮n+6\)

Mà \(n+6⋮n+6\)

\(\Rightarrow31⋮n+6\)

\(\Rightarrow n+6\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

...  (tự làm)

1 tháng 4 2020

Bài chị Vũ Huyền làm gần đúng câu b, cho Mạnh "mạn phép" được sửa lại:

b) Để biểu thức C là 1 số nguyên thì 5n - 1 \(⋮\)n + 6  (n \(\inℤ\))

=> 5n - 1 \(⋮\)n + 6  (n \(\inℤ\))

=> 5n + 30 - 31 \(⋮\)n + 6

=> 5(n + 6) - 31 \(⋮\)n + 6

Vì 5(n + 6) - 31 \(⋮\)n + 6 và 5(n + 6) \(⋮\)n + 6

Nên 31 \(⋮\)n + 6

Tự lm tiếp :))

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)

DD
25 tháng 2 2021

Vì \(n\inℕ\Rightarrow2n+5\ge5\). Lại có \(\frac{6}{2n+5}\)là số nguyên nên suy ra \(2n+5=6\Leftrightarrow n=\frac{1}{2}\)(không thỏa mãn) .

Vậy không tồn tại số tự nhiên \(n\) thỏa mãn yêu cầu bài toán.