Cho: 5a=10b=15c và 2a+3b+4c=58
Tìm a,b,c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì \(a^2-b^2=4c^2\Rightarrow16a^2-16b^2=64c^2\) (1)
Ta có:\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(5a-3b\right)^2-\left(8c\right)^2\)
\(=25a^2-30ab+9b^2-64c^2\) (2)
Thay (1) vào (2) ta được
\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=25a^2-30ab+9b^2-16a^2+16b^2\)
\(=9a^2-30ab+25b^2=\left(3a-5b\right)^2\)
=> đpcm
b, \(M=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2b-b\right)^2\)
\(=4a^2+4b^2+c^2+4b^2+4c^2+a^2+4c^2+4a^2+b^2\)
\(+8ab-4ac-4bc+8bc-4ab-4ac+8ac-4bc-4ab\)
\(=9.\left(a^2+b^2+c^2\right)=9.2017=18153\)
Vậy M=18153
a) \(a^2+25b^2+17+10b-8a=0\)
\(\Rightarrow a^2-8a+16+25b^2+10b+1=0\)
\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2=0\)
Vì \(\left(a-4\right)^2\ge0\) với mọi a
\(\left(5b+1\right)^2\ge0\) với mọi b
\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2\ge0\) với mọi a,b
Mà \(\left(a-4\right)^2+\left(5b+1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)^2=0\\\left(5b+1\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-4=0\\5b+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\5b=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-\dfrac{1}{5}\end{matrix}\right.\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+3b}{c+3d}\)
_______________________________________________
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow P=\left(\frac{2a+3a+4a}{5a+3a+a}\right)^{2000}\\ P=\left(\frac{9a}{9a}\right)^{2000}=1^{2000}=1\)
Vậy tại \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) thì P = 1
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3b}{3d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{3b}{3d}=\frac{b}{d}=\frac{a+3b}{c+3d}.\)
\(\Rightarrow\frac{a+3b}{c+3d}=\frac{b}{d}\left(đpcm\right).\)
Chúc bạn học tốt!
Vì 2a/3b=3b/4c=4c/5d=5d/2a nên suy ra 2a=3b=4c=5d ( Theo công thức dãy tỉ số bằng nhau)
=> 2a/3b=3b/4c=4c/5d=5d/2a=1
=>C=1+1+1+1=4
Vậy C=4
2a/3b = 3b/4c = 4c/5d = 5d/2a (1)
ta có: 2a/3b=3b/4c=> 8ac=9b^2
4c/5d=5d/2a=> 8ac=25d^2
=> 9b^2=25d^2
=> b=5d/3
=> 3b=5d(*)
lại có: 3b/4c=4c/5d => 3b/4c=4c/3b (theo *)
=> 9b^2=16c^2
=> b=4c/3
=> 3b/4c=1
BT= 4*3b/4c (Vì các phân số = nhau)
=> BT=3b/c
Mà: 3b=4c ( Vì 3b/4c=1)
=> BT=4c/c=4
Vậy biểu thức trên = 4
Ta có
\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1.\) (Tính chất dãy tỷ số bằng nhau)
\(\Rightarrow\frac{2a}{3b}+\frac{3b}{4c}+\frac{4c}{5d}+\frac{5d}{2a}=4.1=4\)
\(5a=10b=15c\)
hay \(\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{10}}=\frac{c}{\frac{1}{15}}\)
\(\Rightarrow\frac{2a}{\frac{2}{5}}=\frac{3b}{\frac{3}{10}}=\frac{4c}{\frac{4}{15}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{\frac{2}{5}}=\frac{3b}{\frac{3}{10}}=\frac{4c}{\frac{4}{15}}=\frac{2a+3b+4c}{\frac{2}{5}+\frac{3}{10}+\frac{4}{15}}=\frac{58}{\frac{29}{30}}=60\)
\(5a=60\Rightarrow a=\frac{60}{5}=12\)
\(10b=60\Rightarrow b=\frac{60}{10}=6\)
\(15c=60\Rightarrow c=\frac{60}{15}=4\)