Cho a,b,c thỏa mãn \(a^2+b^2+c^2=1\) và\(a^3+b^3+c^3=1\) . CMR: \(a^{20}+b+c^{2016}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2016}\)
\(\Rightarrow\dfrac{bc+ac+bc}{abc}=\dfrac{1}{2016}\)
\(\Rightarrow\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)
\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc=abc\)
\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a=-b\) hay \(b=-c\) hay \(c=-a\)
-Vậy trong ba số a,b,c tồn tại 2 số đối nhau.
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 2:
Áp dụng BĐT Bunhiacopxky:
$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$
$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$
$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$
$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+c^3=\dfrac{3}{abc}\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3+\dfrac{1}{c^3}-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{3}{abc}=0\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2-\dfrac{1}{c}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{1}{c^2}\right)-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{1}{ab}-\dfrac{1}{bc}-\dfrac{1}{ca}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b=c\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\end{matrix}\right.\)
Đề bài thiếu, cần thêm dữ liệu "a;b;c phân biệt"
Khi đó \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}=\dfrac{a-c}{2016-2018}=\dfrac{a-b}{2016-2017}=\dfrac{b-c}{2017-2018}\)
\(\rightarrow\dfrac{a-c}{-2}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}\)
\(\rightarrow a-c=2\cdot\left(a-b\right)=2\cdot\left(b-c\right)\)
\(\rightarrow\left(a-c\right)^3=\left[2\cdot\left(a-b\right)\right]^2\cdot2\cdot\left(b-c\right)\)
\(\Rightarrow\left(a-c\right)^3=8\cdot\left(a-b\right)^2\cdot\left(b-c\right)\)
\(\begin{cases}a^2+b^2+c^2=1\\a^3+b^3+c^3=1\end{cases}\)\(\Leftrightarrow a^2+b^2+c^2=a^3+b^3+c^3\)
\(\Leftrightarrow a^2+b^2+c^2-a^3-b^3-c^3=0\)
\(\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)
Mà \(\begin{cases}a^2\left(1-a\right)\\b^2\left(1-b\right)\\c^2\left(1-c\right)\end{cases}\ge0\)Suy ra \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)
Dấu = khi \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0\)
\(\Leftrightarrow\begin{cases}a=b=c=0\\a=b=c=1\end{cases}\)
Mà a=b=c=0 thì a2+b2+c2=a3+b3+c3\(\ne1\) (loại)
=>a=b=c=1 <=>T=120+1+12016=1
-->Đpcm
Dễ thấy vai trò của a,b,c là bình đẳng.
Ta có : \(a^2+b^2+c^2=1\) \(\Rightarrow\begin{cases}a\le1\\b\le1\\c\le1\end{cases}\)
Lại có : \(a^2+b^2+c^2=a^3+b^3+c^3\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)
Mặt khác : \(\begin{cases}a^2\left(1-a\right)\ge0\\b^2\left(1-b\right)\ge0\\c^2\left(1-c\right)\ge0\end{cases}\)
Suy ra dấu "=" chỉ xảy ra khi \(\begin{cases}a^2\left(1-a\right)=0\\b^2\left(1-b\right)=0\\c^2\left(1-c\right)=0\end{cases}\)
=> (a;b;c) = (0;0;1) và các hoán vị (vì vai trò của a,b,c bình đẳng)
Từ đó thay vào được điều phải chứng minh đúng.