K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

Để C là một số nguyên thì \(m^2+m+1\) là bình phương của một số tự nhiên.

Đặt \(m^2+m+1=k^2\left(k\in N\text{*}\right)\)

\(\Leftrightarrow m^2+m+1-k^2=0\) . Xét \(\Delta=1-4\left(1-k^2\right)=4k^2-3\) 

Vì m là số nguyên nên \(4k^2-3\) là bình phương của một số nguyên lẻ.

Lại đặt \(4k^2-3=\left(2p+1\right)^2\Leftrightarrow\left(2k-2p-1\right)\left(2k+2p+1\right)=3=1.3=\left(-1\right).\left(-3\right)=...\)

Xét các trường hợp được k = 1 thỏa mãn .

Vậy \(m^2+m+1=1\Leftrightarrow m\left(m+1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}m=0\\m=-1\end{array}\right.\)

 

 

 

3 tháng 9 2018

\(\sqrt{m^2+m+1}=n\)

\(\Rightarrow m^2+m+1=n^2\)

\(\Rightarrow4m^2+4m+4=4n^2\)

\(\Rightarrow4n^2-\left(2m+1\right)^2=3\Rightarrow\left(2n-2m-1\right)\left(2n+2m+1\right)=3\)

Biểu thúc trên có nghiệm nguyên nên C là số nguyên

28 tháng 9 2019

\(2,B=a^5-5a^3+4a=a^5-4a^3-a^3+4a\)

\(=a^3\left(a^2-4\right)-a\left(a^2-4\right)\)

\(=\left(a^3-a\right)\left(a^2-4\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)

5 số tự nhiên liếp tiếp chia hết cho 5

4 số tự nhiên liên tiếp chia hết cho 4

3 số tự nhiên liên tiếp chia hết cho 6

\(\Rightarrow\left(a+1\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(120\)

\(\Rightarrow B\)\(⋮120\left(đpcm\right)\)

30 tháng 1 2017

\(M=\frac{\sqrt{a}+6}{\sqrt{a}+1}=\frac{\left(\sqrt{a}+1\right)+5}{\sqrt{a}+1}=\frac{\sqrt{a}+1}{\sqrt{a}+1}+\frac{5}{\sqrt{a}+1}=1+\frac{5}{\sqrt{a}+1}\)

Để \(1+\frac{5}{\sqrt{a}+1}\) là số nguyên <=> \(\frac{5}{\sqrt{a}+1}\) là số nguyên

=> \(\sqrt{a}+1\) thuộc ước của 5 là - 5; - 1; 1 ; 5

Mà \(\sqrt{a}+1\) > 0 => \(\sqrt{a}+1\) = { 1 ; 5 }

\(\Rightarrow\sqrt{a}\) = { 0 ; 4 }

=> a = { 0; 16 }

25 tháng 9 2021

a) \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\left(x\ge0,x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

b) \(M=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}=1-\dfrac{5}{\sqrt{x}+2}\in Z\)

\(\Rightarrow\sqrt{x}+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Do \(\sqrt{x}\ge0\forall x\)

\(\Rightarrow\sqrt{x}\in\left\{3\right\}\Rightarrow x=9\left(tm\right)\)

Ta có : \(M=\frac{\sqrt{x}+6}{\sqrt{x}+1}=\frac{\sqrt{x}+1+5}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}+\frac{5}{\sqrt{x}+1}=1+\frac{5}{\sqrt{x}+1}\)

Để M nguyên thì 5 chia hết cho \(\sqrt{x}+1\)

Nên : \(\sqrt{x}+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Ta có bảng : 

\(\sqrt{x}+1\)-5-115
\(\sqrt{x}\)-6 (loại)-2(loại04
x  02
15 tháng 9 2017

bài có nhầm đề không bạn? vì tử = mẫu thì M=1 rồi kìa

28 tháng 9 2021

\(M=\dfrac{7\sqrt{a}-2}{2\sqrt{a}+1}\left(đk:a\ge0\right)=\dfrac{3\left(2\sqrt[]{a}+1\right)+\sqrt{a}-5}{2\sqrt{a}+1}=3+\dfrac{\sqrt{a}-5}{2\sqrt{a}+1}\)

Để \(M\in Z,M>0\) thì \(\sqrt{a}-5\ge0\Leftrightarrow a\ge25\) và:

\(\left\{{}\begin{matrix}\sqrt{a}-5⋮2\sqrt{a}+1\\2\sqrt{a}+1⋮2\sqrt{a}+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2\sqrt{a}-10⋮2\sqrt{a}+1\\2\sqrt{a}+1⋮2\sqrt{a}+1\end{matrix}\right.\)

\(\Rightarrow\left(2\sqrt{a}+1\right)-\left(2\sqrt{a}-10\right)⋮2\sqrt{a}+1\)

\(\Rightarrow11⋮2\sqrt{a}+1\Rightarrow2\sqrt{a}+1\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Do \(\sqrt{a}\ge0\forall a\)

\(\Rightarrow\sqrt{a}\in\left\{0;5\right\}\)

\(\Rightarrow a\in\left\{0\left(loại\right);25\left(nhận\right)\right\}\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 8:

\(M=1+\frac{4}{\sqrt{x}+1}\)

Để $M$ nguyên thì $\frac{4}{\sqrt{x}+1}$ nguyên 

Đặt $\frac{4}{\sqrt{x}+1}=t$ với $t$ là số nguyên dương 

$\Rightarrow \sqrt{x}+1=\frac{4}{t}$

$\sqrt{x}=\frac{4}{t}-1=\frac{4-t}{t}\geq 0$

$\Rightarrow 4-t\geq 0\Rightarrow t\leq 4$

Mà $t$ nguyên dương suy ra $t=1;2;3;4$

Kéo theo $x=9; 1; \frac{1}{9}; 0$

Kết hợp đkxđ nên $x=0; \frac{1}{9};9$

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 9:

$P=1+\frac{5}{\sqrt{x}+2}$

Để $P$ nguyên thì $\frac{5}{\sqrt{x}+2}$ nguyên 

Đặt $\frac{5}{\sqrt{x}+2}=t$ với $t\in\mathbb{Z}^+$

$\Leftrightarrow \sqrt{x}+2=\frac{5}{t}$

$\Leftrightarrow \sqrt{x}=\frac{5-2t}{t}\geq 0$

Với $t>0\Rightarrow 5-2t\geq 0$

$\Leftrightarrow t\leq \frac{5}{2}$

Vì $t$ nguyên dương suy ra $t=1;2$

$\Rightarrow x=9; \frac{1}{4}$ (thỏa đkxđ)