K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2019

a) \(2x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)

Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)

5 tháng 10 2019

b)\(x^2+3y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)

nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

nên pt vô nghiệm

18 tháng 5 2016

Từ \(x=\frac{a}{m}\Rightarrow x=\frac{2a}{2m}\)

\(y=\frac{b}{m}\Rightarrow y=\frac{2b}{2m}\)

\(z=\frac{a+b}{2m}\)

Vì x<y (theo đề)

=>\(\frac{a}{m}< \frac{b}{m}\Rightarrow a< b\) (với m>0)

=>a+a<a+b<b+b

=>2a<a+b<2b

=>\(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)

=>x<z<y (đpcm)

11 tháng 7 2017

a/ (x^2-4x+4)+(y^2+2y+1)=0

<=> (x-2x)^2+(y+1)^2 = 0 Vậy x=2 và y = -1

b/ (x^2+2xy+y^2) + ( y^2-2y+1) = 0 

<=> (x+y)^2 + (y-1)^2 = 0 Vậy x=y=1 

12 tháng 7 2017

a) { x^2 - 4x +4 } +{y^2+2x+1}=0

<=>{ x - 2x}^2+{y+1}^2=0 Vậy x =2 vầy =-1

b) { x^2 +2xy +y^2} +{y^2 - 2y +1=0}

<=> {x+y}^2+{ y - 1 }^2 =0 Vậy x=y=1.

NHA BẠN!

29 tháng 11 2021

\(1,\dfrac{1}{1+x}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Cmtt: \(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Nhân VTV

\(\Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\dfrac{x^2y^2z^2}{\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2}}\\ \Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\dfrac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\\ \Leftrightarrow8xyz\le1\Leftrightarrow xyz\le\dfrac{1}{8}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{2}\)

29 tháng 11 2021

\(2,\\ a,2x^2+y^2-2xy=1\\ \Leftrightarrow\left(x-y\right)^2+x^2=1\\ \Leftrightarrow\left(x-y\right)^2=1-x^2\ge0\\ \Leftrightarrow x^2\le1\Leftrightarrow\sqrt{x^2}\le1\Leftrightarrow\left|x\right|\le1\)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

24 tháng 6 2018

a) x2+2y2+2xy-2y+1=0

\(\Leftrightarrow\)(x2+2xy+y2)+(y2-2y+1)=0

\(\Leftrightarrow\)(x+y)2+(y-1)2=0

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy x=-1, y=1

11 tháng 8 2020

Mình làm câu đầu tượng trưng thui nhé, 2 câu sau tương tự vậy !!!!!!

a) pt <=> \(x^2-2xy+2y^2-2x-2y+5=0\)

<=> \(\left(x-y-1\right)^2+y^2-4y+4=0\)

<=> \(\left(x-y-1\right)^2+\left(y-2\right)^2=0\)    (1) 

TA LUÔN CÓ: \(\left(x-y-1\right)^2;\left(y-2\right)^2\ge0\forall x;y\)

=> \(\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\)      (2)

TỪ (1) VÀ (2) => DẤU "=" SẼ PHẢI XẢY RA <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

VẬY \(\left(x;y\right)=\left(3;2\right)\)

25 tháng 8 2016

Vì x < y => a < b

Ta có : \(x=\frac{a}{m}=\frac{2a}{2m}\) ; \(y=\frac{b}{m}=\frac{2b}{2m}\) ; \(z=\frac{a+b}{2m}\)

Vì a < b => a + a < a + b => 2a < a + b

=> x < y (1)

Vì a < b => a + b < b + b => a + b < 2b

=> z < y (2)

Từ (1) và (2) => \(x< y< z\) 

k mk nha Capricorn girl !

25 tháng 8 2016

Gia su x = a/m;y = b/m (a;b;m thuoc Z;m>0) va x< y. Hay chung to rang neu chon z = a+b/2m thi ta co x<y<z

x < y = \(\frac{a}{m}=\frac{b}{m}\Rightarrow a< b\)m < 0 và x < y 

Chọn z = \(\frac{a+b}{2m}\)Thì ta có x < z < y        

x < y => 2m  a < b 

k nha bn