l x + 5 l = 4x + 1
Các bn giúp mk với nhé, l ... l có nghĩa là giá trị tuyệt đối nha, cố gắng nhé!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Với \(x< -1\) thì |x + 1| = -(x + 1) = -x - 1; |x - 2| = 2 - x
Ta có:
H = (-x - 1) - (2 - x)
H = -x - 1 - 2 + x
H = -3
+ Với \(-1\le x< 1\) thì |x + 1| = x + 1; |x - 2| = 2 - x
Ta có:
H = (x + 1) - (2 - x)
H = x + 1 - 2 + x
H = 2x - 1
\(\left|x+\frac{1}{2}\right|-2x=3\)
<=>\(\left|x+\frac{1}{2}\right|=3+2x\)
<=>\(x+\frac{1}{2}=-\left(3+2x\right)\)hoặc\(3+2x\)
Xét \(x+\frac{1}{2}=-\left(3+2x\right)\)
<=>\(x+\frac{1}{2}=3-2x\)
<=>\(x=\frac{5}{6}\left(Loai\right)\)
Xét \(x+\frac{1}{2}=3+2x\)
<=>\(x=-\frac{7}{6}\left(tm\right)\)
Vậy \(x=-\frac{7}{6}\)
\(\left|x-\frac{1}{2}\right|-2x=3\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-\frac{1}{2}-2x==3\\\frac{1}{2}-x-2x=3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}-x=\frac{7}{2}\\-3x=\frac{5}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{7}{2}\\x=-\frac{5}{6}\end{array}\right.\)
-3 là số âm , số âm phải nhân với số âm mới ra số dương mà Ix-1I luôn luôn có giá trị là một số dương , số âm nhân với số dương không thể = 9 vậy x thuộc tập hợp rỗng
Bài 1:
a)|x-2|=x-2
<=>x-2=-(x-2) hoặc (x-2)
=>x-2=-x+2
=>x=2
b)|2x+3|=5x-1
=>2x+3=-(5x-1) hoặc 5x-1
=>2x+3=-5x+1
=>x=-2/7 (loại)
=>x=4/3
Bài 2:
a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)
\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)
\(\Rightarrow A\ge0\)
Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)
Vậy MinA=0 khi x=2; y=-3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:
\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)
\(\Rightarrow B\ge1\)
Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)
Vậy MinB=1 khi x=2016 hoặc 2017
\(\left|2-x\right|+\left|x+1\right|=5\)
TH1 : \(\left|2-x\right|=\pm5\)
+ ) \(2-x=5\)
\(x=2-5\)
\(x=-3\)
+ ) \(2-x=\left(-5\right)\)
\(x=2-\left(-5\right)\)
\(x=7\)
TH2 : \(\left|x+1\right|=\pm5\)
+ ) \(x+1=5\)
\(x=5-1\)
\(x=4\)
+ ) \(x+1=\left(-5\right)\)
\(x=\left(-5\right)-1\)
\(x=-6\)
2 ) \(\left|x+1\right|+\left|2x+1\right|=22\)
TH1 : \(\left|x+1\right|=\pm22\)
+ ) \(x+1=22\)
\(x=22-1\)
\(x=21\)
+ ) \(x+1=-22\)
\(x=-22-1\)
\(x=-23\)
TH2: \(\left|2x+1\right|=\pm22\)
+ ) \(2x+1=22\)
\(2x=21\)
\(x=\frac{21}{2}\)
+ ) \(2x+1=-22\)
\(2x=-23\)
\(x=\frac{-23}{2}\)
+ Với x < -5 thì |x + 5| = -(x + 5) = -x - 5
=> -x - 5 = 4x + 1
=> -x - 4x = 1 + 5
=> -5x = 6
=> \(x=-\frac{6}{5}\), không thỏa mãn x < -5
+ Với \(x\ge-5\) thì |x + 5| = x + 5
=> x + 5 = 4x + 1
=> 4x - x = 5 - 1
=> 3x = 4
=> \(x=\frac{4}{3}\), thỏa mãn \(x\ge-5\)
Vậy \(x=\frac{4}{3}\)
\(\left|x+5\right|=4x+1\)
\(=>\left[\begin{array}{nghiempt}x+5=4x+1\\x+5=-\left(4x+1\right)=-4x-1\end{array}\right.\)
\(=>\left[\begin{array}{nghiempt}3x=4\\5x=-6\end{array}\right.\)
\(=>\left[\begin{array}{nghiempt}x=\frac{4}{3}\\x=-\frac{6}{5}\end{array}\right.\)