K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

pt ↔ \(\log_3\left(x+\frac{1}{x}+1\right)=2x-x^2\)

Nhận xét: \(x+\frac{1}{x}\ge2\Leftrightarrow x+\frac{1}{x}+1\ge3\Leftrightarrow\log_3\left(x+\frac{1}{x}+1\right)\ge1\)

Xét f(x) = 2x - x2 (x > 0), lập bbt thấy GTLN của hàm là f(1) = 1

Ta có; VT>=1 và VP=<1 nên VT = VP = 1, giải ra được x = 1 (thoả)

a: \(log\left(x-2\right)< 3\)

=>\(\left\{{}\begin{matrix}x-2>0\\log\left(x-2\right)< log9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2>0\\x-2< 9\end{matrix}\right.\Leftrightarrow2< x< 11\)

b: \(log_2\left(2x-1\right)>3\)

=>\(\left\{{}\begin{matrix}2x-1>0\\log_2\left(2x-1\right)>log_29\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-1>0\\2x-1>9\end{matrix}\right.\Leftrightarrow2x-1>9\)

=>2x>10

=>x>5

c: \(log_3\left(-x-1\right)< =2\)

=>\(\left\{{}\begin{matrix}-x-1>0\\log_3\left(-x-1\right)< =log_39\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-x-1>0\\-x-1< =9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x>1\\-x< =10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -1\\x>=-10\end{matrix}\right.\Leftrightarrow-10< =x< -1\)

d: \(log_2\left(2x-3\right)>=2\)

=>\(\left\{{}\begin{matrix}2x-3>0\\log_2\left(2x-3\right)>=log_24\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>=4\end{matrix}\right.\)

=>2x-3>=4

=>2x>=7

=>\(x>=\dfrac{7}{2}\)

e: \(log_3\left(2x-7\right)>2\)

=>\(\left\{{}\begin{matrix}2x-7>0\\log_3\left(2x-7\right)>log_39\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>\dfrac{7}{2}\\2x-7>9\end{matrix}\right.\)

=>2x-7>9

=>2x>16

=>x>8

NV
20 tháng 1 2024

a.

\(log\left(x-2\right)< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\x-2< 10^3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 1002\end{matrix}\right.\) \(\Rightarrow2< x< 1002\)

b.

\(log_2\left(2x-1\right)>3\Leftrightarrow\left\{{}\begin{matrix}2x-1>0\\2x-1>2^3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{9}{2}\)

c.

\(log_3\left(-x-1\right)\le2\Rightarrow\left\{{}\begin{matrix}-x-1>0\\-x-1\le3^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x\ge-10\end{matrix}\right.\) \(\Rightarrow-10\le x< -1\)

d.

\(log_2\left(2x-3\right)\ge2\Leftrightarrow\left\{{}\begin{matrix}2x-3>0\\2x-3\ge2^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x>\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{7}{2}\)

e,

\(log_3\left(2x-7\right)>2\Leftrightarrow\left\{{}\begin{matrix}2x-7>0\\2x-7>3^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{2}\\x>8\end{matrix}\right.\) \(\Rightarrow x>8\)

NV
12 tháng 1 2024

ĐKXĐ:

a.

\(2x-4>0\Rightarrow x>2\Rightarrow D=\left(2;+\infty\right)\)

b.

\(2x+8>0\Rightarrow x>-4\Rightarrow D=\left(-4;+\infty\right)\)

c.

\(4-x>0\Rightarrow x< 4\Rightarrow D=\left(-\infty;4\right)\)

d.

\(\dfrac{1}{x+4}>0\Rightarrow x>-4\Rightarrow D=\left(-4;+\infty\right)\)

e. 

\(\left(x-3\right)\left(x+9\right)>0\Rightarrow\left[{}\begin{matrix}x>3\\x< -9\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-9\right)\cup\left(3;+\infty\right)\)

a: ĐKXĐ: 2x-4>0

=>2x>4

=>x>2

b: ĐKXĐ: 2x+8>0

=>2x>-8

=>x>-4

c: ĐKXĐ: 4-x>0

=>-x>-4

=>x<4

d: ĐKXĐ: \(\dfrac{1}{x+4}>0\)

=>x+4>0

=>x>-4

e: ĐKXĐ: \(\left(x-3\right)\left(x+9\right)>0\)

=>\(\left[{}\begin{matrix}x-3>0\\x+9< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -9\end{matrix}\right.\)

a: \(log\left(x-5\right)< 2\)

=>\(\left\{{}\begin{matrix}x-5>0\\log\left(x-5\right)< log4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-5>0\\x-5< 4\end{matrix}\right.\Leftrightarrow5< x< 9\)

b: \(log_2\left(2x-3\right)>4\)

=>\(log_2\left(2x-3\right)>log_216\)

=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>16\end{matrix}\right.\)

=>2x-3>16

=>2x>19

=>\(x>\dfrac{19}{2}\)

c: \(log_3\left(2x+5\right)< =3\)

=>\(log_3\left(2x+5\right)< =log_327\)

=>\(\left\{{}\begin{matrix}2x+5>0\\2x+5< =27\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x< =11\end{matrix}\right.\)

=>\(-\dfrac{5}{2}< x< =11\)

d: \(log_4\left(4x-5\right)>=2\)

=>\(log_4\left(4x-5\right)>=log_416\)

=>4x-5>=16 và 4x-5>0

=>4x>=21 và 4x>5

=>4x>=21

=>\(x>=\dfrac{21}{4}\)

e: \(log_3\left(1-3x\right)>3\)

=>\(log_3\left(1-3x\right)>log_327\)

=>\(\left\{{}\begin{matrix}1-3x>0\\1-3x>27\end{matrix}\right.\)

=>1-3x>27

=>\(-3x>26\)

=>\(x< -\dfrac{26}{3}\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2017

Lời giải:

Để ý rằng \(\log _3(3^{x+1}-3)=\log_3[3(3^x-1)]=1+\log_3(3^x-1)\)

Đặt \(\log_3(3^x-1)=t\). Khi đó PT tương đương:

\(t(t+1)=6\Leftrightarrow (t-2)(t+3)=0\Rightarrow \)\(\left[{}\begin{matrix}t=2\\t=-3\end{matrix}\right.\)

Nếu \(t=2\rightarrow 3^x-1=9\Leftrightarrow 3^x=10\rightarrow x=\log_3(10)\)

Nếu \(t=-3\Rightarrow 3^x-1=\frac{1}{27}\Rightarrow 3^x=\frac{28}{27}\Rightarrow x=\log_3\left (\frac{28}{27}\right)\)

AH
Akai Haruma
Giáo viên
14 tháng 1 2018

Lời giải:
Ta có: \(\log_3(9^{x+1})\log_3(9^x+1)=3\)

\(\Leftrightarrow (x+1)\log_39\log_3(9^x+1)=3\)

\(\Leftrightarrow (x+1)\log_3(9^x+1)=\frac{3}{2}\)

Từ đây suy ra \(x+1\neq 0\)

\(\Rightarrow \log_3(9^x+1)=\frac{3}{2(x+1)}\)

\(\Leftrightarrow 9^x+1=3^{\frac{3}{2(x+1)}}\) (*)

Đạo hàm vế trái: \((9^x+1)'=\ln 9.9^x>0\), hàm đồng biến

Đạo hàm vế phải: \((3^{\frac{3}{2(x+1)}})'=\frac{-3}{2(x+1)^2}.\ln 3.3^{\frac{3}{2(x+1)}}<0\), hàm nghịch biến

Do đó PT (*) có một nghiệm duy nhất.

Đến đây việc còn lại là dò nghiệm duy nhất đó.

\(x\approx 0,3795\)

26 tháng 11 2018

\(\log_3\left(x^2-6\right)=\log_3\left(x-2\right)+\log_33\)
\(\log_3\left(x^2-6\right)=\log_3\left[3\left(x-2\right)\right]\)
\(x^2-6=3x-6\)
\(\left\{{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

NV
1 tháng 12 2018

ĐKXĐ: \(x>0;x\ne1\)

\(log_3\left(x^2-2x+1\right)+\left(x^2-2x+1\right)=log_3x+x\)

Xét hàm \(f\left(t\right)=log_3t+t\) với \(t>0\)

\(\Rightarrow f'\left(t\right)=\dfrac{1}{t.ln3}+1>0\) \(\forall t>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)

\(\Rightarrow x^2-2x+1=x\Leftrightarrow x^2-3x+1=0\)

Phương trình này có tổng 2 nghiệm \(x_1+x_2=-\dfrac{b}{a}=3\)

18 tháng 4 2016

Điều kiện \(\begin{cases}x\ne1\\x>\frac{1}{2}\end{cases}\)

\(\log_3\left(x-1\right)^2+\log_{\sqrt{3}}\left(2x-1\right)=2\Leftrightarrow2\log_3\left|x-1\right|+2\log_3\left(2x-1\right)=2\)

                                                      \(\Leftrightarrow\log_3\left|x-1\right|\left(2x-1\right)=\log_33\)

                                                       \(\Leftrightarrow\left|x-1\right|\left(2x-1\right)=3\)

                                                       \(\frac{1}{2}\)<x<1 và \(2x^2-3x+4=0\)

                                                hoặc x>1 và \(2x^2-3x-2=0\)

\(\Leftrightarrow x=2\) thỏa mãn điều kiện. Vậy x=2