Tìm số dư trong phép chia \(2135^{97}\)cho\(13\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em học đồng dư thức chưa
Học r thì dùng đồng dư nhé ( ko bt đánh dấu đồng dư nên viết tắt là dd nhé )
2135 dd 3 ( mod 13 ) => 213597 dd 397 ( mod 13)
Lại có 397 = (33)32.3 mà 33 = 27 dd 1 (mod 13) => (33)32 dd 1 (mod 13) => 397 dd 3 ( mod 13)
vì 2135 :13 = 164 ( dư 3)
ma UCLN (97;13)=1
=> 213597:13 du 3
2135 đồng dư với 3 (mod13)
=> 213597 đồng dư với 397 (mod13)
33 = 27
đồng dư với 1 (mod13)
=> (33)32.3 đồng dư với 132.3= 3 (mod13)
=> 213597 đồng dư với 3
=> 213597 chia hết cho 13
Vậy: 213597 chia hết cho 13
2135^97 tương đương vs 2135^1 nên :
2135 :13 = 164 ( dư 3)
tick mk đúng cái
gọi số tự nhiên đó là a.
theo bài ra ta có :
a = 7t + 5 (t thuộc N)
a=13k + 4 (k thuộc N)
do đó:
a+9 = (7t + 5) + 9 = 7t + 14 (chia hết cho 7)
a+9 = (13k + 4) + 9 = 13k + 13 (chia hết cho 13)
Mà 7 và 13 nguyên tố cùng nhau nên a+9 chia hết cho 7.13 = 91
Vậy: a+9 chia hết cho 91, suy ra a chia cho 91 có số dư là 91 - 9 = 82
\(3^{2016}\equiv1^{2016}\)
mà \(1^{2016}\)chia 13 dư 1
nên 3^2016 : 13 dư 1
2135 đồng dư với 3(mod 13)
=>213597 đồng dư với 397(mod 13)
33=27 đồng dư với 1(mod 13)
=>(33)32.3 đồng dư với 132.3=3(mod 13)
=>213597 đồng dư với 3(mod 13)
=>213597 chia 13 dư 3
vậy 213597 chia 13 dư 3
Giải
2135=3 mod(13)
\(\Rightarrow2135^{97}\)=397 mod(13)
33=27=1 mod(13)
\(\Rightarrow\)(33)32.3=132.3=3 mod (13)
\(\Rightarrow\)213597 chia 13 dư 3
Vậy 213597 chia 13 dư 3
P/s mod phải viết như mk nhé