Một số chia cho 7 dư 5, chia cho 11 dư 3 và chia cho 17 dư 4. Hỏi số đó chia cho 1309 dư bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Sửa đề: chia 23 dư 7
Vì a chia 17 dư 1 nên a-16 chia hết cho 17
Vì a chia 23 dư 7 nên a-16 chia hết cho 23
Vậy: a chia 391 dư 16
A= 4p+3 = 17m+9= 19n+13
A+25 =4p+28= 17m+34 =19n+38
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19
vậy A+25 chia hết cho 4.17.19 =1292
A chia 1292 dư (1292-25) = 1267
Gọi a là số cần tìm
Ta có:
2737 = 7 . 17 . 23
Do a chia 7 dư 3
a chia 17 dư 12
a chia 23 dư 7
⇒ a chia 2737 dư 3.12.7 = 252
Gọi số cần tìm là a
Ta có: a:7 dư 3 => a+4 chia hết cho 7 => a+4+39 chia hết cho 7 => a+39 chia hết cho 7 (1)
a:17 dư 12 => a+5 chia hết cho 17 => a+5+34 chia hết cho 17 => a+39 chia hết cho 17 (2)
a:23 dư 7 => a+16 chia hết cho 23 => a+16+23 chia hết cho 23 => a +39 chia hết cho 23 (3)
Từ (1), (2), và (3) => a+39 chia hết cho 7, 17 và 23
Mà UCLN(7; 17; 23)= 1
=> a+39 chia hết cho 7x17x23
=> a:2737 dư 2689
Vậy số đó chia cho 2737 dư 2689
theo đầu bài, ta có:
A=7.a+4
=17.b+3
=23.c+11 (a,b,c ∈∈ N)
nếu ta thêm 150 vào số đã cho thì ta lần lượt có:
A+150=7.a+4+150=7.a+7.22=7.(a+22)
=17.b+3+150=17.b+17.9=17.(b+9)
=23.c+11+150=23.c+23.7=23.(c+7)
như vậy A+150 đồng thời chia hết cho 7,17 và 23. nhưng 7, 17 và 23 là ba sô đôi một nguyên tố cùng nhau, suy ra A+150 chia hết cho 7.17.13=2737
vậy A+150=2737k (k=1;2;3;4...)
suy ra: A=2737k-150=2737k-2737+2587=2737(k-1)+2587=2737k'+2587
do 2587<2737 nên 2587 là số dư trong phép chia số đã cho A cho 2737
Ta thấy 1309=7.11.17
Gọi số chia cho 7 dư 5 là b , và số bị chia là a
Gọi số chia cho 11 dư 3 là q , và số bị chia là p
Gọi số chia cho 17 dư 4 là m và số bị chia là n
Ta thấy : a:b=7 dư 5 ; p:q=11 dư 3 ; n:m=17 dư 4
Ta được : a=7b+5 ; p=11q+3 ; n=17m+4
a.b.c = (7b+5)(11q+3)(17m+4)
a.b.c=1309.b.q.m+60
Vì 1309.b.q.m chia hết cho 1309 nên số dư của số đó cho 1309 là 60
Sai thôi nha