K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

Lời giải:

a. Với $n\in\mathbb{Z}$, để $A$ nguyên thì:

$n-5\vdots n+1$

$\Rightarrow (n+1)-6\vdots n+1$

$\Rightarrow 6\vdots n+1$

$\Rightarrow n+1\in\left\{\pm 1; \pm 2; \pm 3; \pm 6\right\}$

$\Rightarrow n\in \left\{-2; 0; 1; -3; 2; -4; 5; -7\right\}$

b.

Gọi $d=ƯCLN(n-5,n+1)$

$\Rightarrow n-5\vdots d; n+1\vdots d$

$\Rightarrow (n+1)-(n-5)\vdots d$

$\Rightarrow 6\vdots d$

$\Rightarrow d\in \left\{1; 2; 3; 6\right\}$

Để ps đã cho tối giản thì $d$ chỉ có thể bằng $1$.

$\Rightarrow n+1\not\vdots 2; n+1\not\vdots 3$

$\Rightarrow n$ chẵn và $n\neq 3k-1$ với $k$ tự nhiên.

 

1 tháng 5 2019

1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)\(3n+2\)là nguyên tố cùng nhau

\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)

1 tháng 5 2019

câu 1 : 

gọi d = ƯCLN ( 2n + 1; 3n +2 )

=> 2n + 1 chia hết cho d  => 3 ( 2n +1 ) chia hết cho d

    3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d

ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4  - [ 6n + 3 ] chia hết cho d

=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau 

=> \(\frac{2n+1}{3n+2}\)  là phân số tối giản

4 tháng 5 2015

1) Gọi d= ƯCLN(2n +1; 3n+2)

=> 2n + 1 chia hết cho d => 3.(2n+1) chia hết cho d

3n+2 chia hết cho d => 2.(3n+2) chia hết cho d

=> 2.(3n+2) - 3.(2n+1) chia hết cho d

=> 1 chia hết cho d => d = 1 => 2n + 1 và 3n + 2 là nguyên tố cùng nhau => ps đã cho tối giản

2) Để A thuộc Z thì n+ 2 phải chia hết cho n - 5

=> (n+ 2) - (n-5) chia hết cho n - 5

=> 7 chia hết cho n - 5 hay n - 5 thuộc Ư(7) = {-1;1; 7;-7}

n-5-11-77
n46-212

Vậy n \(\in\) {-2;4;6;12}

4 tháng 5 2015

1) Gọi d= ƯCLN(2n +1; 3n+2)

=> 2n + 1 chia hết cho d => 3.(2n+1) chia hết cho d

3n+2 chia hết cho d => 2.(3n+2) chia hết cho d

=> 2.(3n+2) - 3.(2n+1) chia hết cho d

=> 1 chia hết cho d => d = 1 => 2n + 1 và 3n + 2 là nguyên tố cùng nhau => ps đã cho tối giản

2) Để A thuộc Z thì n+ 2 phải chia hết cho n - 5

=> (n+ 2) - (n-5) chia hết cho n - 5

=> 7 chia hết cho n - 5 hay n - 5 thuộc Ư(7) = {-1;1; 7;-7}

n-5-11-77
n46-212

Vậy n $\in$∈ {-2;4;6;12}

22 tháng 4 2016

bạn ơi

a) Để A=\(\frac{n-5}{n+1}\)có giá trị nguyên thì n-5 chia hết cho n+1

=>n+1-6 chia hết cho n+1

=>6 chia hết cho n+1

=>n+1 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}

=>n thuộc {0;1;2;5;-2;-3;-4;-7}

Vậy.....

15 tháng 4 2019

a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)

Vậy điều kiện của n để A là phân số là \(n\ne1\)

Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)

=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)

Lập bảng :

n - 11-15-5
n206-4

b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow(n+1)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy : .....

Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)

để A là số nguyên thì n-1 chia hết cho 5

suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}

* Xét trường hợp:

TH1 n-1=1 suy ra n=2(TM)

TH2 n-1=-1 suy ra n=0 (TM)

TH3 n-1=5 suy ra n=6(TM)

TH4n-1=-5 suy ra n=-4(TM)                                  ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)

vậy n thuộc { -4;0;2;6}

# HỌC TỐT #

23 tháng 2 2016

\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)

Để A là phân số tối giản <=> \(\frac{4}{n-3}\) là phân số tối giản 

23 tháng 2 2016

Để A là phân số tối giản thì: n + 1 chia hết cho n - 3

                                      =>   n -3 + 4 chia hết cho n  - 3

                                          mà n - 3 chia hết cho n - 3

                                        => 4 chia hết cho n - 3 hay n - 3 thuộc Ư(4)

                                       => n - 3 thuộc { -1 ; 1 ; 2 ; -2 ; 4 ; - 4 }

                                      => n thuộc { 2 ; 4 ; 5 ; 1 ; 7 ; - 1 }

5 tháng 5 2019

Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)

Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)

\(n-1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(2\)\(0\)\(6\)\(-4\)

a) 2 hoặc -1

b)M={-3;-2;0;1;3;4;5}