Bài 1 ) Tìm x
lxl=2x-1
2 )so sánh 321 và 231
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
TH1 : \(x< 0;\)ta có :
\(-x=2x-1\)
\(\Rightarrow2x-\left(-x\right)=1\)
\(3x=1\)
\(x=\frac{1}{3}\)( Không thỏa mãn \(x< 0\))
TH2 : \(x\ge0;\)ta có :
\(x=2x-1\)
\(\Rightarrow x=1\)(thỏa mãn )
Vậy x = 1.
Bài 2 :
\(3^{21}=3^{20}.3=9^{10}.3\)
\(2^{31}=2^{30}.2=8^{10}.2\)
\(9^{10}>8^{10};3>2\Rightarrow3^{21}>2^{31}.\)
Vậy ...
so sánh 321 và 231
Ta có : \(3^{21}=3.3^{20}=3.9^{10}\)
\(2^{31}=2.2^{30}=2.8^{10}\)
Vậy : \(2.8^{10}< 3.9^{10}\Leftrightarrow3^{21}>2^{31}\)
Bài 1 đề là jz
Bài 2:
ta có: 234 > 230 = (23)10 = 810 > 310
=> 234 > 310
Bài 1 đề là jz???
Bài 2:
ta có: 234 > 230 = (23)10 = 810 > 310
=> 234 > 310
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)
Trường hợp 1 : \(x< 0\) , ta có :
\(-x=2x-1\)
\(\Rightarrow2x-\left(-x\right)=1\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\frac{1}{3}\) ( không thõa mãn )
Trương hợp 2 : \(x\ge0\) , ta có :
\(x=2x-1\)
\(\Rightarrow x-2x=-1\)
\(\Rightarrow x=1\) ( thõa mãn )
Vậy \(x=1\)
\(3^{21}=3^{20}.3=9^{10}.3\)
\(2^{31}=2^{30}.2=8^{10}.2\)
\(9^{10}>8^{10}\); \(3>2\) \(\Rightarrow3^{21}>2^{31}\)
Vậy ..................