K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2016

Bạn tự vẽ hình nha ==''

G là trung điểm của MN

H là trung điểm của MI

=> GH là đường trung bình của tam giác MNI

=> GH // NI

=> GHNI là hình thang

 GH là đường trung bình của tam giác MNI

=> GH = NI : 2 = 3 : 2 = 1,5 (cm)

E là trung điểm của NI

H là trung điểm của MI

=> EH là đường trung bình của tam giác MNI

=> EH // MN

=> MHEN là hình thang

mà M = 900

=> MHEN là hình thang vuông

Chúc bạn học tốt ^^

8 tháng 9 2016

a) Có: NG=MG(gt)

           MH=HI(gt)

=>GH là đường trung bình của ΔMNI

b)=>GH//NI

=>tứ giác GHIN là hình thang

c) Có: GH là đg trung bình

=>GH=1/2NI=1/2.3=3/2

d) Có: NE=EI(gt)

           MH=HI(gt)

=> HE là đg trung bình

=>HE//MN

=>MHEN là ht vuông

a: Ta có: ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(NP^2=9^2+12^2=225\)

=>\(NP=\sqrt{225}=15\left(cm\right)\)

Xét ΔMNP có MI là phân giác

nên \(\dfrac{IN}{MN}=\dfrac{IP}{MP}\)

=>\(\dfrac{IN}{9}=\dfrac{IP}{12}\)

=>\(\dfrac{IN}{3}=\dfrac{IP}{4}\)

mà IN+IP=NP=5cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{IN}{3}=\dfrac{IP}{4}=\dfrac{IN+IP}{3+4}=\dfrac{5}{7}\)

=>\(IN=3\cdot\dfrac{5}{7}=\dfrac{15}{7}\left(cm\right);IP=5\cdot\dfrac{4}{7}=\dfrac{20}{7}\left(cm\right)\)

 b: Diện tích tam giác MNP là:

\(S_{MNP}=\dfrac{1}{2}\cdot MN\cdot MP=\dfrac{1}{2}\cdot9\cdot12=54\left(cm^2\right)\)

Ta có: \(\dfrac{IN}{3}=\dfrac{IP}{4}\)

=>\(\dfrac{IN}{IP}=\dfrac{3}{4}\)

=>\(\dfrac{IN}{IP+IN}=\dfrac{3}{7}\)

=>\(\dfrac{IN}{PN}=\dfrac{3}{7}\)

=>\(S_{MNI}=\dfrac{3}{7}\cdot S_{MNP}=\dfrac{3}{7}\cdot54=\dfrac{162}{7}\left(cm^2\right)\)

a: ΔMNI vuông tại M

=>MN<NI và góc MIN<90 độ

=>góc NIP>90 độ

=>NI<NP

=>MN<NI<NP

b: Xét ΔIPK và ΔIMN có

IP=IM

góc PIK=góc MIN

IK=IN

=>ΔIPK=ΔIMN

c: ΔIPK=ΔIMN

=>PK=MN và goc MNI=góc PKI

d: góc MPN=90-35=55 độ

12 tháng 7 2018

M N I H 25cm 144 cm

Tam giác MNI vuông tại M, áp dụng hệ thức, ta có:

\(MH^2=NH.HI=25.144=3600\)

\(\Rightarrow MH=\sqrt{3600}=60\left(cm\right)\)

Vì H nằm giữa N và I nên: \(NH+HI=25+144=NI=169\left(cm\right)\)

Tam giác MNI vuông tại M, áp dụng hệ thức, ta lại có:

\(MN^2=NH.NI=25.169=4225\Rightarrow MN=\sqrt{4225}=65\left(cm\right)\)

\(MI^2=HI.NI=144.169=24336\Rightarrow MI=\sqrt{24336}=156\left(cm\right)\)

Vậy .....

12 tháng 5 2021

undefined

a: Xét ΔMNP vuông tại M và ΔHIP vuông tại H có

góc P chung

=>ΔMNP đồng dạng với ΔHIP

b: IN/IP=MN/MP=3/4

=>IN/3=IP/4=(IN+IP)/(3+4)=5/7

=>IN=15/7cm; IP=20/7cm

IH//MN

=>IH/MN=PI/PN

=>IH/3=20/7:5=4/7

=>IH=12/7cm

a: IN/IP=MN/MP=3/5

c: NP=căn 10^2-6^2=8cm

NI là phân giác

=>NI/MN=IP/MP

=>NI/3=NP/5=8/8=1

=>NI=3cm

S MNI=1/2*3*6=9cm2

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔNMK có NM=NK

nên ΔNMK cân tại N

mà \(\widehat{MNK}=60^0\)

nên ΔNMK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔMNK có NM=NK

nên ΔMNK cân tại N

Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)

nên ΔMNK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

8 tháng 9 2021

a) Xét tam giác MNI và tam giác HNI lần lượt vuông tại M và H  có:

\(\widehat{MNI}=\widehat{HNI}\)( do NI là tia phân giác \(\widehat{MNI}\))

NI chung

=> ΔMNI=ΔHNI(ch-gn)

b) Ta có: ΔMNI=ΔHNI(cmt)

=> MI=IH( 2 cạnh tương ứng)

Xét tam giác HIP vuông tại H có:

IP là cạnh huyền

=> PI>IH

Mà MI=IH(cmt)

=> PI>MI

a: Xét ΔMNI vuông tại M và ΔHNI vuông tại H có 

NI chung

\(\widehat{MNI}=\widehat{HNI}\)

Do đó: ΔMNI=ΔHNI

b: Ta có: ΔMNI=ΔHNI

Suy ra: MI=HI

mà HI<IP

nên PI>MI