Các bn giúp mk với nha mk sẽ like
Tìm x,y thuộc Z
x/4-1/y=1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài ta có:
\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{xy-4}{4y}=\frac{1}{2}\)
\(\Rightarrow2\left(xy-4\right)=4y\)
\(\Rightarrow xy-4=2y\)
\(\Rightarrow xy-2y=4\)
\(\Rightarrow y\left(x-2\right)=4\)
Từ đó ta có bảng sau:
y | -4 | -1 | 1 | 4 |
x - 2 | -1 | -4 | 4 | 1 |
x | 1 | -2 | 6 | 3 |
A=x4+3x2+2
Ta có :
\(x^4\ge0\forall x\) và \(3x^2\ge0\forall x\Rightarrow x^4+3x^2\ge0\forall x\)
\(\Rightarrow A=x^4+3x^2+2\ge2\forall x\) . Có GTNN là 2 khi x = 0
Vậy AMin = 2 <=> x = 0
B = (x4+5)2
Ta có :
\(x^4\ge0\forall x\Leftrightarrow x^4+5\ge5\forall x\)
\(\Rightarrow B=\left(x^4+5\right)^2\ge5^2=25\forall x\) . Có GTNN là 25 khi tại x = 0
Vậy BMin = 25 <=> x = 0
C=(x-1)2+(y+2)2
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\) nên C = \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\) . Có GTNN là 0 tại \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy CMin = = <=> x=1 , y=-2
ta có x^2, x^4 \(\ge\)0. lũy thừa với số mũ chẵn là số không âm
A = x^4 + 3x^2+2 \(\ge\)0 + 3.0+2 =2. Vậy GTNN là 2 khi x = 0
B = (x^4 + 5)^2 \(\ge\)(0+5)^2=5^2=25. Vậy GTNN của B là 25 khi x=0
Ta có (x-1)^2\(\ge\)0 và (y+2)^2 \(\ge\)0
C= (x-1)^2 + (y+2)^2 \(\ge\)0 + 0 = 0.
Vậy GTNN của C là 0
khi x-1=0 hay x=1
và y+2=0 hay hay y=-2
Tu de bai ra ta co:
2x+3va y+1 thuoc U(24)={1;2;3;4;6;8;12;24}
Ta co bang gia tri:
2x+3 1 2 3 4 6 8 12 24
y+1 24 12 8 6 4 3 2 1
x -1 -0,5 0 0,5 1,5 2,5 4,5 10,5
y 23 11 7 5 3 2 1 0
chon/loai loai loai chon loai loai loai loai loai
Vay cac cap (x,y thoa man de bai la:(o,7) vay x=0,y=7 se thoa man
Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)
2.a.x/7+1/14=(-1)/y
<=>2x/14+1/14=(-1)/y
<=>2x+1/14=(-1)/y
=>(2x+1).y=14.(-1)
<=>(2x+1).y=(-14)
(2x+1) và y là cặp ước của (-14).
(-14)=(-1).14=(-14).1
Ta có bảng giá trị:
2x+1 | -1 | 14 | 1 | -14 |
2x | -2 | 13 | 0 | -15 |
x | -1 | 13/2 | 0 | -15/2 |
y | 14 | -1 | -14 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x,y) thuộc{(-1;14);(0;-14)}
b.x/9+-1/6=-1/y
<=>2x/9+-3/18=-1/y
<=>2x+(-3)/18=-1/y
=>[2x+(-3)].y=-1.18
<=>(2x-3).y=-18
(2x-3) và y là cặp ước của -18
-18=-1.18=-18.1
Ta có bảng giá trị:
2x-3 | -1 | 18 | 1 | -18 |
2x | 2 | 21 | 4 | -15 |
x | 1 | 21/2 | 2 | -15/2 |
y | 18 | -1 | -18 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x;y) thuộc{(1;18);(4;-18)}
A=[(-4x-8)+13]/(x+2)
=-4+13/(x+2) thuộc Z <=> 13/(x+2) thuộc Z <=> 13 chia hết cho (x+2)(do x thuộc Z)
hay (x+2) thuộc Ư(13)={-1;1;13;-13}
tìm x
B=[(x²-1)+6]/(x-1)
=x+1+6/(x-1)
làm tiếp như A
C=[(x²+3x+2)-3]/(x+2)
=[(x+2)(x+1)-3]/(x+2)
=x+1-3/(x+2)
làm tiếp như A
2/cậu cho đề thiếu đọc lại đề xem A có thuộc Z không
3,4 cũng vậy
Ta có:4/x=x/4
Hay x2/4x=16/4x
Hay x2=16
Hay x2=42
Hay x=4
Suy ra x=4
Vậy x=4
Ta có: \(\frac{x+2}{3}=\frac{y-1}{4}=\frac{z+5}{7}\)
\(\Rightarrow\frac{2\left(x+2\right)}{6}=\frac{y-1}{4}=\frac{z+5}{7}\)
\(\Rightarrow\frac{2x+4}{6}=\frac{y-1}{4}=\frac{z+5}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau được:
\(\frac{2x+4-\left(y-1\right)+z+5}{6-4+7}=\frac{2x+4-y+1+z+5}{6-4+7}=\frac{\left(2x-y+z\right)+\left(4+1+5\right)}{6-4+7}\)
\(=\frac{17+10}{9}=\frac{27}{9}=3\)
Suy ra: \(2x+4=6.3\Rightarrow2x=14\Rightarrow x=7\)
\(y-1=3.4\Rightarrow y=13\)
\(z+5=3.7\Rightarrow z=16\)
Vậy x = 7 ; y = 13; z = 16
Ta có:
\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)
\(\frac{xy}{4y}-\frac{4}{4y}=\frac{1}{2}\)
\(\frac{xy-4}{4y}=\frac{1}{2}\)
\(2.\left(xy-4\right)=4y\)
\(2xy-8-4y=0\)
\(2xy-2-4-4y=0\)
\(2.\left(xy+1\right)-4.\left(y+1\right)=0\)
\(2.\left(xy+1\right)-2.2.\left(y+1\right)=0\)
\(2.\left[\left(xy+1\right)-2.\left(y+1\right)\right]=0\)
\(xy+1-2y-2=0\)
\(y.\left(x-2\right)=1\)
Ta có:1=1.1=(-1).(-1)
Do đó ta có bảng sau:
Vậy cặp (x;y) TM là:(3;1)(1;-1)