tìm 1 phân số bằng phân số \(\frac{2}{5}\) và có tổng của tử và mẫu là 175
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tử số là: 175:(2 +5).2=50
mẫu số là:50:2.5=125
vậy phân số cần tìm là 50/125
ta có sơ đồ : tử số : |===|===|
mẫu số : |===|===|===|===|===| tổng : 175
tổng số phần bằng nhau là :
2 + 5 = 7 ( phần )
Tử số là :
175 : 7 x 2 = 50
Mẫu số là :
175 : 7 x 5 = 125
Vậy phân số đó là \(\frac{50}{125}\)
Ta có sơ đồ :
Tử số : /-----/-----/
Mẫu số : /-----/-----/-----/-----/-----/
Theo sơ đồ, tổng số phần bằng nhau là :
2 + 5 = 7 ( phần )
Tử số cần tìm là :
( 175 : 7 ) x 2 = 50
Mẫu số cần tìm là :
175 - 50 = 125
Vậy phân số cần tìm là \(\frac{50}{125}\)
Mẫu số của phân số đó là:
175:(2+5).5=125
Tử số của phân số đó là:
175-125=50
Vậy phân số đó bằng: \(\frac{50}{125}\)
1) Nếu chuyển từ mẫu số lên tử số \(12\)đơn vị thì tổng của tử số và mẫu số không đổi.
Khi đó tử số mới là:
\(210\div2=105\)
Tử số ban đầu là:
\(105-12=93\)
Mẫu số ban đầu là:
\(210-93=117\)
Phân số cần tìm là: \(\frac{93}{117}\).
2) Nếu thêm \(9\)đơn vị vào tử số thì tổng tử số mới và mẫu số là:
\(175+9=184\)
Tử số mới hay mẫu số là:
\(184\div2=92\)
Tử số là:
\(92-9=83\)
Phân số cần tìm là: \(\frac{83}{92}\).
Gọi tử là a, mẫu là b ta có:
\(\begin{cases}a+b=175\\\frac{a}{b}=\frac{2}{5}\end{cases}\) \(\Rightarrow\begin{cases}a+b=175\\\frac{a}{2}=\frac{b}{5}\end{cases}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{5}=\frac{a+b}{2+5}=\frac{175}{7}=25\)
\(\frac{a}{2}=25\Rightarrow a=50\)
\(\frac{b}{5}=25\Rightarrow b=125\)
Vậy: phân số cần tìm là \(\frac{50}{125}\)
Giải:
Gọi tử số và mẫu số lần lượt là a và b ( a,b thuộc N* )
Theo bài ra ta có:
\(\frac{a}{b}=\frac{2}{5}\Rightarrow\frac{a}{2}=\frac{b}{5}\) và a + b = 175
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{5}=\frac{a+b}{2+5}=\frac{175}{7}=25\)
+) \(\frac{a}{2}=25\Rightarrow a=50\)
+) \(\frac{b}{5}=25\Rightarrow b=125\)
Vậy phân số đó là \(\frac{50}{125}\)