K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

a/ \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left[\left(x+1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-3\right)\right]\)

\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)

Suy ra Min A = -36 <=> \(x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)

b/ \(B=19-6x-9x^2=-9\left(x-\frac{1}{3}\right)^2+20\le20\)

Suy ra Min B = 20 <=> x = 1/3

5 tháng 9 2016

a) \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)

\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)

\(\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\)

Vì \(\left(x^2-5x\right)^2\ge0\)

=> \(\left(x^2-5x\right)^2-36\ge-36\)

Vậy GTNN của A là -36 khi \(x^2-5x=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)

b) \(B=19-6x-9x^2=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)

Vì \(-\left(3x+1\right)^2\le0\)

=> \(-\left(3x+1\right)+20\le20\)

Vậy GTLN của B là 20 khi \(x=-\frac{1}{3}\)

a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi 2x-1=0

\(\Leftrightarrow2x=1\)

hay \(x=\dfrac{1}{2}\)

Vậy: Giá trị lớn nhất của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\dfrac{1}{2}\)

4 tháng 1 2020

a) \(f\left(x\right)=2.\left(x^2\right)^n-5.\left(x^n\right)^2+8n^{n-1}.x^{1+n}-4.x^{n^2+1}.x^{2n-n^2-1}\)

\(=2x^{2n}-5x^{2n}+8x^{2x}-4x^{2n}\)

\(=x^{2n}\)

b) \(f\left(x\right)+2020=x^{2n}+2020\)

Vì \(n\in N\Rightarrow2n\in N\)và 2n là số chẵn

\(\Rightarrow x^{2n}\ge1\)

\(\Rightarrow x^{2n}+2020\ge2021\)

Dấu"="xảy ra \(\Leftrightarrow x^{2n}=1\)

                      \(\Leftrightarrow n=0\)

Vậy ...

( ko bít đúng ko -.- )

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

23 tháng 8 2019

mong mọi người nhanh giúp

17 tháng 6 2019

\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)

\(=2a^2.2b^2-4a^2b^2=0\)

\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)

\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)

\(=\left[4-11x\right]^2\)

\(=16-88x+121x^2\)

chúc bn học tốt

27 tháng 9 2020

Mình cũng thắc mắc câu này ;-;

27 tháng 9 2020

Ta có:

\(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|=\left|\frac{3}{4}-x\right|+\left|x+\frac{9}{7}\right|\ge\left|\frac{3}{4}-x+x+\frac{9}{7}\right|=\frac{57}{28}\)

=> \(28\cdot\left(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\right)\ge57\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(\frac{3}{4}-x\right)\left(x+\frac{9}{7}\right)\ge0\Rightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)

Vậy \(Min=28\Leftrightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)