K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)

\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right):\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)

\(P=\left(\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\right):\frac{2x^2+y+2}{x+1}\)

\(P=\left(\frac{2x^2+y-2}{2y-x}.\frac{x+1}{2x^2+y-2}\right).\frac{1}{x+1}\)

\(P=\frac{1}{2y-x}\)

Tại \(x=-1,76\) và \(y=\frac{3}{25}\) thì giá trị của \(Q=\frac{1}{2}\)

 

8 tháng 7 2016

thanks hihi

8 tháng 7 2016

Đặt \(A=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)

      \(B=\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)

    \(C=\frac{x+1}{2x^2+y+2}\)

Ta có: 

A = \(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-y^2-xy-y^2}=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)

=>A=\(\frac{x^2-y^2+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)

B=\(\frac{\left(2x^2\right)^2+2.2x^2.y+y^2-4}{x^2+xy+x+y}=\frac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}=\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)

=>\(P=\left(A:B\right):C\)

       \(=\left[\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}:\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)

       \(=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}.\frac{2x^2+y+2}{x+1}\)

        \(=\frac{1}{2y-x}\)

=>\(P=\frac{1}{2y-x}\)

Thế x=-1,76 và y=3/25 vào P

=>\(P=\frac{1}{2.\frac{3}{25}-1,76}=\frac{1}{2}\)

\(N=3x^4+3x^2y^2+x^2y^2+y^4+2y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+y^2\right)+2y^2\)

\(=3x^2+3y^2=3\)

18 tháng 7 2016

21. Phân tích A thành \(A=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a^2+b^2+c^2+ab+bc+ac\right)\). Từ đó dễ dàng chứng minh.

18 tháng 7 2016

23. \(9y\left(y-x\right)=4x^2\Leftrightarrow9y^2-9xy=4x^2\Leftrightarrow4x^2+9xy-9y^2=0\)

Chia cả hai vế của đẳng thức trên với \(y^2>0\)được : 

\(4\left(\frac{x}{y}\right)^2+\frac{9x}{y}-9=0\). Đặt \(t=\frac{x}{y},t>0\)(Vì x,y dương)

\(\Rightarrow4^2+9t-9=0\Leftrightarrow\orbr{\begin{cases}t=\frac{3}{4}\left(\text{nhận}\right)\\t=-3\left(\text{loại}\right)\end{cases}}\)

Vậy \(\frac{x}{y}=\frac{3}{4}\Rightarrow y=\frac{4x}{3}\)thay vào biểu thức được :

\(\frac{x-y}{x+y}=\frac{x-\left(\frac{4x}{3}\right)}{x+\left(\frac{4x}{3}\right)}=-\frac{1}{7}\)

7 tháng 8 2016

a) A=(2X^2+XY)+(4X+2Y)

      =X(2X+Y) + 2(2X+Y)   

      = (2X+Y)(2+X) 

Thay X=88,Y=-76 

A=(2*88-76)(2+88)=100*90=9000

b) nhóm X^2 với -7X,XY với -7Y,làm tương tự thì B=6

Cảm ơn bạn nhé