K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

Ta có: M + N + 1 = 111...1 + 444...4 + 1

                             (2n c/s 1)(n c/s 4)

= 111...1 x 1000...0 + 111...1 + 111...1 x 4 + 1

 (n c/s 1)   (n c/s 0)    (n c/s 1) (n c/s 1)

= 111...1 x (1000...0 + 1 + 4) + 1

  (n c/s 1)   (n c/s 0)

= 111...1 x 1000...05 + 1

  (n c/s 1)  (n-1 c/s 0)

= 111...1 x 3 x 333...35 + 1

  (n c/s 1)      (n-1 c/s 3)

= 333...3 x 333...35 + 1

   (n c/s 1) (n-1 c/s 3)

= 333...3 x 333...34 + 333...3 + 1

  (n c/s 3)  (n-1 c/s 3) (n c/s 3)

= 333...3 x 333...4 + 333...34

 (n c/s 3) (n-1 c/s 3) (n-1 c/s 3)

= 333...342 là số chính phương (đpcm)

  (n-1 c/s 3)

5 tháng 9 2016

 

Ta chứng minh được 

\(\overline{aaa....a}\) ( n số a)

\(=\frac{\left(10^n-1\right)}{9}.a\)

\(\Rightarrow M+N+1=\frac{\left(10^{2n}-1\right)}{9}+\frac{\left(10^n-1\right)}{9}.4+1\)

\(\Rightarrow M+N+1=\frac{\left(10^{2n}-1\right)+\left(10^n-1\right)4+9}{9}\)

\(\Rightarrow M+N+1=\frac{10^{2n}-1+4.10^n-4+9}{9}\)

\(\Rightarrow M+N+1=\frac{10^{2n}+4.10^n+4}{9}\)

\(\Rightarrow M+N+1=\frac{\left(10^n\right)^2+2.10^n.2+2^2}{9}\)

\(\Rightarrow M+N+1=\frac{\left(10^n+2\right)^2}{9}\)

\(\Rightarrow M+N+1=\left[\frac{\left(10^n+2\right)}{3}\right]^2\)

Mặt khác  \(10^n+2=100...02\) ( n - 1 ) số 0

Tổng chữ số \(=1+0\left(n-1\right)+2=3⋮3\)

=> \(10^n+2⋮3\)

=> \(\frac{\left(10^n+2\right)}{3}\in N\)

\(\Rightarrow\left[\frac{\left(10^n+2\right)}{3}\right]^2\) là số chính phương

=> M+N+1 là số chình phương

12 tháng 7 2016

kết quả là 1872

18 tháng 8 2016

là 1872 nhé

22 tháng 7 2016

no cung lam the voi minh mat day that

22 tháng 7 2016

Nó đc bao nhiu điểm

4 tháng 9 2016

 a=11...1:2n số 1 nên a=(10^2n - 1)/9 
b=11...1:n+1 số 1 nên b=[10^(n+1) - 1]/9 
c=66...6:n số 6 nên c=6*(10^n -1)/9 
a+b+c+8=(10^2n - 1)/9 + [10^(n+1) - 1]/9 + 6*(10^n -1)/9 +72/9 
=(10^2n - 1 + 10*10n -1 +6*10^n - 6 + 72)/9 
=[ (10^n)^2 + 2*10^n(5+3) +64]/9 
=[ (10^n)^2 + 2*8*10^n + 8^2]/9 
= (10^n + 8 )^2/9 
= [(10^n + 8 )/3]^2 
vì 10^n +8=100...0 +8:tổng các chữ số chia hết cho 3 nên (10^n + 8 )/3 là 1 số nguyên =>[(10^n + 8 )/3]^2 là số chính phương

26 tháng 7 2017

K MIK NHA BẠN

a=1.....1(2n số 1)=1....1(n số 1). +1...1(n số 1)
b=1...1(n+1 số 1)=1...1(n số 1).10+1
c=6...6(n số 6)=6.1...1(n số1)
Đặt m=1...1(n số 1)   =9m+1
a+b+c+8=m.(9m+2)+10m+1+6m+8=9m^2+18m+9=(3m+3)^2 là số chính phương

28 tháng 7 2016

HÃy giải theo phương thức cấu tạo số phân tích rồi suy luận ra

29 tháng 8 2017

tự làm 

29 tháng 6 2015

Đặ 111...11(n CS 1)=a=>10n=9a+1

a=111...11(2n CS1)=111...1(n CS 1)111...11(n CS1)=111...1(n CS1)000...00(nCS0)+111...11(n CS1)=a.(9a+1)+a

b=111...11(n+1CS1)=111..11(nCS1).10+1=10a+1

c=666...66(nCS6)=6.111...11(nCS1)=6a

=> a+b+c+8=9a2+18a+9=(3a+3)2

P/s: Khó trình bày quá

26 tháng 7 2017

Đặ 111...11(n CS 1)=a=>10n=9a+1

a=111...11(2n CS1)=111...1(n CS 1)111...11(n CS1)=111...1(n CS1)000...00(nCS0)+111...11(n CS1)=a.(9a+1)+a

b=111...11(n+1CS1)=111..11(nCS1).10+1=10a+1

c=666...66(nCS6)=6.111...11(nCS1)=6a

=> a+b+c+8=9a2+18a+9=(3a+3)2