K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

a) x3 – 2x2 + x = x(x2 – 2x + 1) = x(x – 1)2

b) 2x2 + 4x + 2 – 2y2 = 2[(x2 + 2x + 1) – y2]

= 2[(x + 1)2 – y2]

= 2(x + 1 – y)(x + 1 + y)

c) 2xy – x2 – y2 + 16 = 16 – (x2 – 2xy + y2) = 42 – (x – y)2

= (4 – x + y)(4 + x – y)

2 tháng 1 2022

\(a,x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\\ v,x^3-2x^2-x+2=\left(x^3-2x^2\right)-\left(x-2\right)=x^2\left(x-2\right)-\left(x-2\right)=\left(x-2\right)\left(x^2-1\right)=\left(x-1\right)\left(x+1\right)\left(x-2\right)\\ c,25-16x^2=\left(5-4x\right)\left(5+4x\right)\)

2 tháng 1 2022

\(a,=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\\ b,=x^2\left(x-2\right)-\left(x-2\right)\\ =\left(x-2\right)\left(x^2-1\right)=\left(x-1\right)\left(x-2\right)\left(x+2\right)\\ c,=\left(5-4x\right)\left(5+4x\right)\)

1A:

a: \(x^3+2x=x\left(x^2+2\right)\)

b: \(3x-6y=3\left(x-2y\right)\)

c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)

\(=5\left(x+3y\right)\left(1-3x\right)\)

d: \(3\left(x-y\right)-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+3\right)\)

7 tháng 10 2021

1A. a. x(x2+2) 

b. 3(x-2y)

c. 5(x+3y)(1-3x) 

d. (x-y) (3-5x)

1B. a. 2x(2x-3)

b.xy(x2-2xy+5)

c. 2x(x+1)(x+2)

d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)

 

4 tháng 8 2023

\(a.x^3-2x^2-2x-4\\ =\left(x^3-2x^2\right)-\left(2x-4\right)\\ =x^2\left(x-2\right)-2\left(x-2\right)\\ =\left(x^2-2\right)\left(x-2\right)\)

\(b.xy+1-x-y\\ =\left(xy-x\right)+\left(-y+1\right)\\ =x\left(y-1\right)-\left(y-1\right)\\ =\left(x-1\right)\left(y-1\right)\)

\(c.x^2-4xy+4y^2-4y\\ =\left(x-2y\right)^2-4y\\ =\left(x-2y\right)^2-\left(2y\right)^2\\ =\left(x-2y+2y\right)\left(x-2y-2y\right)\\ =x\left(x-4y\right)\)

\(d.16-x^2+2xy-y^2\\ =4^2-\left(x-y\right)^2\\ =\left(4-x+y\right)\left(4-x-y\right)\)

 

 

 

b: =xy-x-y+1

=x(y-1)-(y-1)

=(x-1)(y-1)

c: =(x-2y)^2-4y

\(=\left(x-2y-2\sqrt{y}\right)\left(x-2y+2\sqrt{y}\right)\)

d: =16-(x^2-2xy+y^2)

=16-(x-y)^2

=(4-x+y)(4+x-y)

31 tháng 7 2021

a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)

b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)

c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)

d) bạn xem lại đề đúng ko

e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)

a) Ta có: \(x^3+4x-5\)

\(=x^3-x+5x-5\)

\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+5\right)\)

b) Ta có: \(x^3-3x^2+4\)

\(=x^3+x^2-4x^2+4\)

\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+4\right)\)

\(=\left(x+1\right)\cdot\left(x-2\right)^2\)

c) Ta có: \(x^3+2x^2+3x+2\)

\(=x^3+x^2+x^2+x+2x+2\)

\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+2\right)\)

d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)

\(=\left(x+y\right)^2+2\left(x+y\right)-3\)

\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)

\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-1\right)\)

10 tháng 10 2021

a) \(xy^2-25x=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\)

b) \(x\left(x-y\right)+2x-2y=x\left(x-y\right)+\left(2x-2y\right)=x\left(x-y\right)+2\left(x-y\right)=\left(x-y\right)\left(x+2\right)\)

c) \(x^3-3x^2-4x+12=\left(x^3-3x^2\right)-\left(4x-12\right)=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-2\right)\left(x-3\right)\left(x+2\right)\)

10 tháng 10 2021

\(a,=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\\ b,=x\left(x-y\right)+2\left(x-y\right)=\left(x+2\right)\left(x-y\right)\\ c,=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)

`a, x^3 + y^3 + x + y`

`= (x+y)(x^2-xy+y^2)+x+y`

`= (x+y)(x^2-xy+y^2+1)`

`b, x^3 - y^3 + x -y`

`= (x-y)(x^2+xy+y^2)+x-y`

`= (x-y)(x^2+xy+y^2+1)`

`c, (x-y)^3 + (x+y)^3`

`= (x-y+x+y)(x^2-2xy+y^2 - x^2 + y^2 + x^2 + 2xy + y^2)`

`= (2x)(x^2 + 3y^2)`

`d, x^3 - 3x^2y + 3xy^2 - y^3 + y^2 - x^2`

`= (x-y)^3 + (y-x)(x+y)`

`=(x-y)(x^2+2xy+y^2-x-y)`

a: =(x+y)(x^2-xy+y^2)+(x+y)

=(x+y)(x^2-xy+y^2+1)

b: =(x-y)(x^2+xy+y^2)+(x-y)

=(x-y)(x^2+xy+y^2+1)

c: =x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2-y^3

=2x^3+6xy^2

d: =(x-y)^3+(y-x)(y+x)

=(x-y)[(x-y)^2-(x+y)]

13 tháng 11 2021

a) \(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)

b) \(=\left(x^2+2x\right)+\left(10x+20\right)=x\left(x+2\right)+10\left(x+2\right)=\left(x+2\right)\left(x+10\right)\)

c) đặt \(x^2+x+1=t\)

\(\left(x^2+x+1\right)\left(x^2+x+4\right)+2=t\left(t+3\right)+2=t^2+3t+2=\left(t^2+t\right)+\left(2t+2\right)=t\left(t+1\right)+2\left(t+1\right)=\left(t+1\right)\left(t+2\right)=\left(x^2+x+2\right)\left(x^2+x+3\right)\)

18 tháng 12 2021

a: =(x-2)(3x-2)

7 tháng 11 2021

\(A=4x\left(x^2-2x+1\right)=4x\left(x-1\right)^2\\ B=\left(x-y\right)^2-16=\left(x-y-4\right)\left(x-y+4\right)\\ C=\left(x-2\right)\left(x^2+2x+4\right)+3\left(x-2\right)=\left(x-2\right)\left(x^2+2x+7\right)\)

7 tháng 11 2021

a) \(A=4x\left(x^2-2x+1\right)=4x\left(x-1\right)^2\)

b) \(B=\left(x^2-2xy+y^2\right)-16=\left(x-y\right)^2-16=\left(x-y-4\right)\left(x-y+4\right)\)

c) \(C=\left(x-2\right)\left(x^2+2x+4\right)+3\left(x-2\right)=\left(x-2\right)\left(x^2+2x+7\right)\)