K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

\(5x-3y=2xy-11\Leftrightarrow4xy+6y-10x-15=7\)

\(\Leftrightarrow2x\left(2y-5\right)+3\left(2y-5\right)=7\Leftrightarrow\left(2x+3\right)\left(2y-5\right)=7\)

Phân tích 7 = 1.7 = (-1).(-7) = ......

Từ đó ghép cặp và tính.

28 tháng 6 2015

5x-3y=2xy-11
<=>10x-6y=4xy-22
<=>(10x-4xy) +( 15-6y)=-7
<=>2x(5-2y) +3(5-2y) =-7
<=>(5-2y)(2x+3) =-7
Vì 2x+3 là ước của 7 nên ta có:

2x+3=7 ; 5-2y = -1

hoặc 2x+3= -7 ; 5-2y = 1

<=> x=2 ; y=3 hoặc x= -5 ; y= 2

Vậy \(\left(x,y\right)\) là \(\left(2;3\right);\left(-5;2\right)\)

1 tháng 7 2015

5x-3y=2xy-11
<=>10x-6y=4xy-22
<=> (10x-4xy) + ( 15-6y) =- 7
<=> 2x(5-2y) + 3(5-2y) = -7
<=> (5-2y)(2x+3) =-7
Vì 2x+3 \(\in\) Ư(7 ) nên ta có:

2x+3=7 ; 5-2y = -1

hoặc 2x+3= -7 ; 5-2y = 1

<=> x = 2 ; y = 3 hoặc x = -5 ; y = 2

Vậy (x ; y) \(\in\) {(2 ; 3) ; (-5 ; 2)}

3 tháng 12 2021

1.  \(2xy-x+y=3\)\(\Leftrightarrow4xy-2x+2y=6\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)=5\)

\(\Leftrightarrow\left(2y-1\right)\left(2x+1\right)=5\)

Ta lập bảng giá trị:

\(2y-1\)15-1-5
\(2x+1\)51-5-1
\(x\)20-3-1
\(y\)130-2

Vậy phương trình đã cho có cách nghiệm nguyên (2;1);(0;3);(-3;0) và (-1;-2)

3 tháng 12 2021

 2xy-x+y=3

2(2xy-x+y)=2.3

4xy-2x+2y=6

2x(2y-1)-2y=6

2x(2y-1)-2y+1=6+1

2x(2y-1)-(2y-1)=7

(2x-1)(2y-1)=7

26 tháng 7 2021

Trả lời:

Ta có: 5x - 3y = 2xy - 11

<=> 2 ( 5x - 3y ) = 2 ( 2xy - 11 )

<=> 10x - 6y = 4xy - 22

<=> 10x - 6y = 4xy - 15 - 7

<=> 10x - 6y -  4xy + 15 = - 7

<=> - ( 4xy - 10x + 6y - 15 ) = - 7

<=> 4xy - 10x + 6y - 15 = 7

<=> ( 4xy - 10x ) + ( 6y - 15 ) = 7

<=> 2x ( 2y - 5 ) + 3 ( 2y - 5 ) = 7

<=> ( 2x + 3 ) ( 2y - 5 ) = 7

=> 2x + 3 thuộc ước của 7; 2y - 5 thuộc ước của 7

Mà Ư(7) = { 1; - 1; 7; - 7 }

nên ta có bảng sau:

2x+31-17-7
2y-57-71-1
x-1 -22-5
y6-132

Mà x, y là số tự nhiên nên cặp ( x ; y ) thỏa mãn đề bài là: ( 2 ; 3 )

Vậy x = 2; y = 3

26 tháng 7 2021

5x - 3y = 2xy - 11

<=> 3y + 2xy - 5x = 11

<=> 6y + 4xy - 10x = 22

<=> 2y(3 + 2x) - 10x - 15 =  7

<=> 2y(3 + 2x) - 5(3 + 2x) = 7

<=> (2x + 3)(2y - 5) = 7

Lập bảng xét các trường hợp 

2x + 317-1-7
2y - 571-7-1
x-12-2-5
y63-12

Vậy x = 2 ; y = 3

4 tháng 3 2020

Biểu diễn y theo x :

\(\left(2x+3\right)y=5x+11\)

Dễ thấy :\(2x+3\) khác \(0\) (vì x là số nguyên) do đó:

            \(y=\frac{5x+11}{2x+3}=2+\frac{x+5}{2x+3}\)

Để \(y\)  \(\in\) \(Z\) thì \(x+5\) chia hết cho \(2x+3\)

           \(\implies\) \(2.\left(x+5\right)\) chia hết cho \(2x+3\)

           \(\implies\)   \(2x+10\)   chia hết cho  \(2x+3\) 

           \(\implies\)   \(2x+3+7\) chia hết cho \(2x+3\) 

           \(\implies\)  \(7\) chia hết cho \(2x+3\)

           \(\implies\)  \(2x+3\) \(\in\)   \(Ư\)(\(7\))={ \(1;-1;7;-7\) }

Ta có bảng sau:

\(2x+3\)\(1\)\(-1\)\(7\)\(-7\)
\(x\)\(-1\)\(-2\)\(2\)\(-5\)
\(y\)\(6\)\(-1\)\(3\)\(2\)

Vậy \(\left(x;y\right)\) \(\in\) {\(\left(-1;6\right),\left(-2;-1\right),\left(2;3\right),\left(-5;2\right)\) }

4 tháng 3 2020

Biểu diễn y theo x :

\(\left(2x+3\right)y=5x+11\)

Dễ thấy :\(2x+3\) khác \(0\) (vì x là số nguyên) do đó:

            \(y=\frac{5x+11}{2x+3}=2+\frac{x+5}{2x+3}\)

Để \(y\)  \(\in\) \(Z\) thì \(x+5\) chia hết cho \(2x+3\)

           \(\implies\) \(2.\left(x+5\right)\) chia hết cho \(2x+3\)

           \(\implies\)   \(2x+10\)   chia hết cho  \(2x+3\) 

           \(\implies\)   \(2x+3+7\) chia hết cho \(2x+3\) 

           \(\implies\)  \(7\) chia hết cho \(2x+3\)

           \(\implies\)  \(2x+3\) \(\in\)   \(Ư\)(\(7\))={ \(1;-1;7;-7\) }

Ta có bảng sau:

\(2x+3\)\(1\)\(-1\)\(7\)\(-7\)
\(x\)\(-1\)\(-2\)\(2\)\(-5\)
\(y\)\(6\)\(-1\)\(3\)\(2\)

Vậy \(\left(x;y\right)\) \(\in\) {\(\left(-1;6\right),\left(-2;-1\right),\left(2;3\right),\left(-5;2\right)\) }

27 tháng 5 2016

a) (x-2)(2y-1)=6

=>x-2 và 2y-1 thuộc Ư(6)

lập bảng làm típ

b,c phân tích ra thành nt cũng tt a lập bảng

27 tháng 5 2016

a) (x-2)(2y-1)=6

=>x-2 và 2y-1 thuộc Ư(6)

lập bảng làm típ

b,c phân tích ra thành nt cũng tt a lập bảng