K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

Ta có : \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\frac{a+b+c}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}a+b+c=0\\a=b=c\end{array}\right.\)

Từ đó tính được N

9 tháng 2 2020

\(\text{Ta có:}\)

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3=\)

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

\(\Leftrightarrow\left(a+b+c-6\right)\left(....\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

\(\Leftrightarrow a=1\text{ hoặc }b=2\text{ hoặc }c=3\)

còn lại ko tính đc bạn ktra lại đề

9 tháng 2 2020

mk nhầm , chiều mk lm tiếp

8 tháng 8 2017

Ta có:

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)

Ta lại có: 

\(a^2+b^2+c^2\ge ab+bc+ca\)

Dấu = xảy ra khi \(a=b=c\)

Thế vào N ta được

\(N=\frac{a^{2015}+b^{2015}+c^{2015}}{\left(a+b+c\right)^{2015}}=\frac{3a^{2015}}{3^{2015}.a^{2015}}=\frac{1}{a^{2014}}\)

23 tháng 1 2016
a2686
b2687
c2688

 

23 tháng 1 2016

vì a-2015; b-2015; c-2015 là 3 số nguyên liên tiếp=> a+1=b; a+2=c

ta có:(a-2015)+(b-2015)+ (c-2015) =2016

=>(a-2015)+(a+1-2015)+(a+2-2015)=2016

=>(a*-2015)+(a-2014)+(a-2013)=2016

=>3a-(2015+2014+2013)=2016

=>3a-6042=2016

=>3a=2016+6042=8058

=>a=8058:3=2686

=>b=2686+1=2687

=>c=2686+2=2688