Tìm x nguyên để biểu thức sau nhận giá trị nguyên
a) \(A=\frac{x^2+13x-13}{x+3}\)
b) \(B=\frac{x^2+x+3}{x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ne\pm3\)
a) \(A=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x\left(3+x\right)}{\left(3-x\right)\left(3+x\right)}-\frac{\left(x+1\right)\left(3-x\right)}{\left(x+3\right)\left(3-x\right)}+\frac{x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3}{x+3}-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x^2-6x+x^2-2x-3+x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3-x+1}{x+3}\right)\)
\(A=\left(\frac{-8x-2}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{4}{x+3}\right)\)
\(A=\frac{-2\left(4x+1\right)\left(x+3\right)}{\left(3-x\right)\left(3+x\right)4}\)
\(A=\frac{-\left(4x+1\right)}{2\left(3-x\right)}\)
\(A=\frac{4x+1}{2\left(x-3\right)}\)
b) \(\left|x-5\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => ta xét x = 7
\(A=\frac{4\cdot7+1}{2\cdot\left(7-3\right)}=\frac{29}{8}\)
c) Để A nguyên thì 4x + 1 ⋮ 2x - 3
<=> 4x - 6 + 7 ⋮ 2x - 3
<=> 2 ( 2x - 3 ) + 7 ⋮ 2x - 3
Mà 2 ( 2x - 3 ) ⋮ ( 2x - 3 ) => 7 ⋮ 2x - 3
=> 2x - 3 thuộc Ư(7) = { 1; -1; 7; -7 }
=> x thuộc { 2; 1; 5; -2 }
Vậy .....
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{2x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-\left(x^2+1\right)}{x^2-9} : \frac{x+3-\left(x-1\right)}{x+3}\)
\(A=\frac{2x^2-6x-x^2+2x+3-x^2-1}{x^2-9} : \frac{4}{x+3}\)
\(A=\frac{-4x+2}{x^2+9} : \frac{4}{x+3}\)
\(A=\frac{2\left(1-2x\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{4}=\frac{1-2x}{2x-6}\)
b)
Có 2 trường hợp:
T.Hợp 1:
\(x-5=2\Leftrightarrow x=7\)(thỏa mã ĐKXĐ)
thay vào A ta được: A=\(-\frac{13}{8}\)
T.Hợp 2:
\(x-5=-2\Leftrightarrow x=3\)(Không thỏa mãn ĐKXĐ)
Vậy không tồn tại giá trị của A tại x=3
Vậy với x=7 thì A=-13/8
c)
\(\frac{1-2x}{2x-6}=\frac{1-\left(2x-6\right)-6}{2x-6}=-1-\frac{5}{2x-6}\)
Do -1 nguyên, để A nguyên thì \(-\frac{5}{2x-6}\inℤ\)
Để \(-\frac{5}{2x-6}\inℤ\)thì \(2x-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Do 2x-6 chẵn, để x nguyên thì 2x-6 là 1 số chẵn .
Vậy không có giá trị nguyên nào của x để A nguyên
a: ĐKXĐ: x>0
Để A là số nguyên thì \(7⋮\sqrt{x}\)
=>\(\sqrt{x}\in\left\{1;7\right\}\)
=>\(x\in\left\{1;49\right\}\)
b: ĐKXĐ: x>1
Để B là số nguyên thì \(3⋮\sqrt{x-1}\)
=>\(\sqrt{x-1}\in\left\{1;3\right\}\)
=>\(x-1\in\left\{1;9\right\}\)
=>\(x\in\left\{2;10\right\}\)
c: ĐKXĐ: x>3
Để C là số nguyên thì \(2⋮\sqrt{x-3}\)
=>\(\sqrt{x-3}\in\left\{1;2\right\}\)
=>\(x-3\in\left\{1;4\right\}\)
=>\(x\in\left\{4;7\right\}\)
a) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}=1+\dfrac{4}{\sqrt{x}-2}\)
Để A nguyên thì 4 ⋮ √x - 2
\(\Rightarrow\sqrt{x}-2\inƯ\left(4\right)\)
\(\Rightarrow\sqrt{x}-2\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0;6;-2\right\}\)
Mà x \(\sqrt{x}\ge0\)
=> x thuộc {9; 1; 16; 0; 36}
b)
a, B=[(x+3)/(x-3)+(2x^2-6)/(9-x^2)+x/(x+3)]:[(6x-12)/(2x^2-18)]
=[(x+3)/(x-3)+ -(2x^2-6)/(x^2-9)+x/(x+3)]:[(6x-12)/(2x^2-18)]
=[(x+3)/(x-3)+ -(2x^2-6)/(x-3)(x+3)+x/(x+3)]:[(6x-12)/2(x-3)(x+3)]
={[(x+3)^2-2x^2+6+x(x-3)]/(x-3)(x+3)}:[6(x-2)/2(x-3)(x+3)]
=(x^2+6x+9-2x^2+6+x^2-3x)/(x-3)(x+3): 6(x-2)/2(x-3)(x+3)
=3x+15/(x-3)(x+3): 6(x-2)/2(x-3)(x+3)
=3(x+5)/(x-3)(x+3): 6(x-2)/2(x-3)(x+3
=3(x+5)/(x-3)(x+3).2(x-3)(x+3)/6(x-2)
=3(x+5).6/(x-2)
=6(x+5)/6(x-2)
=x+5/x-2
b,Ta thay : x=1
=>x+5/x-2=1+5/1-2=-6
Ta thay : x=-3
=>x+5/x-2=-3+5/-3-2=-2/5
c, Ta co : x+5/x-2=0
x+5=(x-2).0
x+5=0
x=-5
Vậy : x=-5
mình mới làm được phần b thôi :
B=\(\frac{x^2+x+3}{x+1}=\frac{x.x+x+3}{x+1}=\frac{x\left(x+1\right)+3}{x+1}=\frac{x\left(x+1\right)}{x+1}+\frac{3}{x+1}=x+\frac{3}{x+1}\)
Để B nhận giá trị nguyên => \(x+\frac{3}{x+1}\) phải có giá trị nguyên=> \(\frac{3}{x+1}\)phải có giá trị nghuyên => 3 chia hết cho x + 1=> x+1 thuộc ước của 3
vậy để B có giá trị nguyên => x = -4; -2; 0; 2
Gắng giúp mình phần a) nhé :)