Giúp mik với mok cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 were - would you play
2 weren't studying - would have
3 had taken - wouldn't have got
4 would you go - could
5 will you give - is
6 recycle - won't be
7 had heard - wouldn't have gone
8 would you buy - had
9 don't hurry - will miss
10 had phoned - would have given
11 were - wouldn't eat
12 will go - rains
13 had known - would have sent
14 won't feel - swims
15 hadn't freezed - would have gone
Bài 2:
b: Gọi (d'): y=ax+b
Vì (d')//(D) nên a=2
hay y=2x+b
Thay x=-1 và y=2 vào y=2x+b, ta được:
\(2\cdot\left(-1\right)+b=2\)
\(\Leftrightarrow b=0\)
Vậy: y=2x
a, Trọng lượng vật là \(P=10m=50.10=500\left(N\right)\)
40 cm = 0,4(m)
Công thực hiện là
\(A=P.h=500.0,4=0,2\left(KJ\right)\)
Lực kéo vật khi dùng mặt phẳng nghiêng là
\(F=\dfrac{A}{l}=\dfrac{200\left(KJ\rightarrow J\right)}{2}=100\left(N\right)\)
b, Công thực hiện vật khi có ma sát là
\(A'=\dfrac{A}{80\%}.100\%=\dfrac{200}{80}.100=250\left(J\right)\)
Lực kéo vật lúc này là
\(F_k=\dfrac{A}{s}=\dfrac{500}{2}=250\left(N\right)\)
Công do lực ma sát sinh ra là
\(A_{ms}=A-A_i=A-H.A=200-80\%.200=40\left(J\right)\)
Độ lớn lực ma sát là
\(A_{ms}=F_{ms}.s\Rightarrow F_{ms}=\dfrac{A_{ms}}{s}\\ \)
\(=\dfrac{40}{2}=20\left(N\right)\)
a: \(=\left(-\dfrac{3}{5}+\dfrac{-4}{5}+\dfrac{7}{5}\right)+\dfrac{1}{3}=\dfrac{1}{3}\)
b: \(=\dfrac{-3}{17}+\dfrac{2}{3}+\dfrac{3}{17}=\dfrac{2}{3}\)
e: \(=\dfrac{-5}{21}-\dfrac{16}{21}+1=0\)
g: \(=\dfrac{-4}{11}\cdot\dfrac{-11}{4}\cdot\dfrac{1}{3}=\dfrac{1}{3}\)
h: \(=\dfrac{7}{36}+\dfrac{8}{9}-\dfrac{2}{3}=\dfrac{7}{36}+\dfrac{32}{36}-\dfrac{24}{36}=\dfrac{15}{36}=\dfrac{5}{12}\)
i: \(=\dfrac{4}{7}-\dfrac{5}{8}-\dfrac{3}{28}=\dfrac{32}{56}-\dfrac{35}{56}-\dfrac{6}{56}=\dfrac{-9}{56}\)
a,Ta có:A=-4(x2-2xy+y2)-(y2-10y+25)+37
= -4(x-y)2-(y-5)2+37
Vì -4(x-y)2≤0 ∀x,y
- (y-5)2 ≤0 ∀y
⇒ A= -4(x-y)2-(y-5)2+37 ≤37
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\Leftrightarrow x=y=5\)
Vậy,Max A=37⇔x=y=5
b,B=-x2-y2+xy+2x+2y
⇔4B=-4x2-4y2+4xy+8x+8y
= -[4x2-4x(y-2)+(y2-4y+4)]-3(\(y^2-2.\dfrac{2}{3}y+\dfrac{4}{9}\))+\(\dfrac{16}{3}\)
\(=-\left(2x-y+2\right)^2-3\left(y-\dfrac{2}{3}\right)^2+\dfrac{16}{3}\)
Vì \(-\left(2x-y+2\right)^2\le0\forall x,y\)
\(-3\left(y-\dfrac{2}{3}\right)^2\le0\forall y\)
\(\Rightarrow4B=-\left(2x-y+2\right)^2-3\left(y-\dfrac{2}{3}\right)^2+\dfrac{16}{3}\le\dfrac{16}{3}\)
\(\Leftrightarrow B\le\dfrac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-y+2=0\\y-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
Vậy,Max B=\(\dfrac{4}{3}\Leftrightarrow x=-\dfrac{2}{3};y=\dfrac{2}{3}\)
AMax chứ ko phải AMin